368 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*******************************************************************************
 | 
						|
Copyright (c) 2005-2009 David Williams
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied
 | 
						|
warranty. In no event will the authors be held liable for any damages
 | 
						|
arising from the use of this software.
 | 
						|
 | 
						|
Permission is granted to anyone to use this software for any purpose,
 | 
						|
including commercial applications, and to alter it and redistribute it
 | 
						|
freely, subject to the following restrictions:
 | 
						|
 | 
						|
    1. The origin of this software must not be misrepresented; you must not
 | 
						|
    claim that you wrote the original software. If you use this software
 | 
						|
    in a product, an acknowledgment in the product documentation would be
 | 
						|
    appreciated but is not required.
 | 
						|
 | 
						|
    2. Altered source versions must be plainly marked as such, and must not be
 | 
						|
    misrepresented as being the original software.
 | 
						|
 | 
						|
    3. This notice may not be removed or altered from any source
 | 
						|
    distribution. 	
 | 
						|
*******************************************************************************/
 | 
						|
 | 
						|
#include "PolyVox/Impl/Timer.h"
 | 
						|
 | 
						|
namespace PolyVox
 | 
						|
{
 | 
						|
	template< typename Sampler, typename ControllerType>
 | 
						|
	Vector3DFloat computeCentralDifferenceGradient(const Sampler& volIter, ControllerType& controller)
 | 
						|
	{
 | 
						|
		//FIXME - Should actually use DensityType here, both in principle and because the maths may be
 | 
						|
		//faster (and to reduce casts). So it would be good to add a way to get DensityType from a voxel.
 | 
						|
		//But watch out for when the DensityType is unsigned and the difference could be negative.
 | 
						|
		float voxel1nx = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1nx0py0pz()));
 | 
						|
		float voxel1px = static_cast<float>(controller.convertToDensity(volIter.peekVoxel1px0py0pz()));
 | 
						|
 | 
						|
		float voxel1ny = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1ny0pz()));
 | 
						|
		float voxel1py = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px1py0pz()));
 | 
						|
 | 
						|
		float voxel1nz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1nz()));
 | 
						|
		float voxel1pz = static_cast<float>(controller.convertToDensity(volIter.peekVoxel0px0py1pz()));
 | 
						|
 | 
						|
		return Vector3DFloat
 | 
						|
			(
 | 
						|
			voxel1nx - voxel1px,
 | 
						|
			voxel1ny - voxel1py,
 | 
						|
			voxel1nz - voxel1pz
 | 
						|
			);
 | 
						|
	}
 | 
						|
 | 
						|
	template< typename VolumeType, typename MeshType, typename ControllerType >
 | 
						|
	void extractMarchingCubesMeshCustom(VolumeType* volData, Region region, MeshType* result, ControllerType controller)
 | 
						|
	{		
 | 
						|
		// Validate parameters
 | 
						|
		POLYVOX_THROW_IF(volData == nullptr, std::invalid_argument, "Provided volume cannot be null");
 | 
						|
		POLYVOX_THROW_IF(result == nullptr, std::invalid_argument, "Provided mesh cannot be null");
 | 
						|
 | 
						|
		// For profiling this function
 | 
						|
		Timer timer;
 | 
						|
 | 
						|
		// Performance note: Profiling indicates that simply adding vertices and indices to the std::vector is one 
 | 
						|
		// of the bottlenecks when generating the mesh. Reserving space in advance helps here but is wasteful in the 
 | 
						|
		// common case that no/few vertices are generated. Maybe it's worth reserving a couple of thousand or so?
 | 
						|
		result->clear();
 | 
						|
 | 
						|
		// Store some commonly used values for performance and convienience
 | 
						|
		const uint32_t uRegionWidthInVoxels = region.getWidthInVoxels();
 | 
						|
		const uint32_t uRegionHeightInVoxels = region.getHeightInVoxels();
 | 
						|
		const uint32_t uRegionDepthInVoxels = region.getDepthInVoxels();
 | 
						|
 | 
						|
		typename ControllerType::DensityType tThreshold = controller.getThreshold();		
 | 
						|
 | 
						|
		// A naive implemetation of Marching Cubes might sample the eight corner voxels of every cell to determine the cell index. 
 | 
						|
		// However, when processing the cells sequentially we cn observe that many of the voxels are shared with previous adjacent 
 | 
						|
		// cells, and so we can obtain these by careful bit-shifting. These variables keep track of previous cells for this purpose.
 | 
						|
		// We don't clear the arrays because the algorithm ensures that we only read from elements we have previously written to.
 | 
						|
		uint8_t uPreviousCellIndex = 0;
 | 
						|
		Array1DUint8 pPreviousRowCellIndices(uRegionWidthInVoxels);
 | 
						|
		Array2DUint8 pPreviousSliceCellIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
 | 
						|
 | 
						|
		// A given vertex may be shared by multiple triangles, so we need to keep track of the indices into the vertex array.
 | 
						|
		// We don't clear the arrays because the algorithm ensures that we only read from elements we have previously written to.
 | 
						|
		Array<2, Vector3DInt32> pIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
 | 
						|
		Array<2, Vector3DInt32> pPreviousIndices(uRegionWidthInVoxels, uRegionHeightInVoxels);
 | 
						|
 | 
						|
		// A sampler pointing at the beginning of the region, which gets incremented to always point at the beginning of a slice.
 | 
						|
		typename VolumeType::Sampler startOfSlice(volData);
 | 
						|
		startOfSlice.setPosition(region.getLowerX(), region.getLowerY(), region.getLowerZ());
 | 
						|
 | 
						|
		for (uint32_t uZRegSpace = 0; uZRegSpace < uRegionDepthInVoxels; uZRegSpace++)
 | 
						|
		{
 | 
						|
			// A sampler pointing at the beginning of the slice, which gets incremented to always point at the beginning of a row.
 | 
						|
			typename VolumeType::Sampler startOfRow = startOfSlice;
 | 
						|
 | 
						|
			for (uint32_t uYRegSpace = 0; uYRegSpace < uRegionHeightInVoxels; uYRegSpace++)
 | 
						|
			{
 | 
						|
				// Copying a sampler which is already pointing at the correct location seems (slightly) faster than
 | 
						|
				// calling setPosition(). Therefore we make use of 'startOfRow' and 'startOfSlice' to reset the sampler.
 | 
						|
				typename VolumeType::Sampler sampler = startOfRow;
 | 
						|
 | 
						|
				for (uint32_t uXRegSpace = 0; uXRegSpace < uRegionWidthInVoxels; uXRegSpace++)
 | 
						|
				{
 | 
						|
					// Note: In many cases the provided region will be (mostly) empty which means mesh vertices/indices 
 | 
						|
					// are not generated and the only thing that is done for each cell is the computation of uCellIndex.
 | 
						|
					// It appears that retriving the voxel value is not so expensive and that it is the bitwise combining
 | 
						|
					// which actually carries the cost.
 | 
						|
					//
 | 
						|
					// If we really need to speed this up more then it may be possible to pack 4 8-bit cell indices into
 | 
						|
					// a single 32-bit value and then perform the bitwise logic on all four of them at the same time. 
 | 
						|
					// However, this complicates the code and there would still be the cost of packing/unpacking so it's
 | 
						|
					// not clear if there is really a benefit. It's something to consider in the future.
 | 
						|
 | 
						|
					// Each bit of the cell index specifies whether a given corner of the cell is above or below the threshold.
 | 
						|
					uint8_t uCellIndex = 0;
 | 
						|
 | 
						|
					// Four bits of our cube index are obtained by looking at the cube index for
 | 
						|
					// the previous slice and copying four of those bits into their new positions.
 | 
						|
					uint8_t uPreviousCellIndexZ = pPreviousSliceCellIndices(uXRegSpace, uYRegSpace);
 | 
						|
					uPreviousCellIndexZ >>= 4;
 | 
						|
					uCellIndex |= uPreviousCellIndexZ;
 | 
						|
 | 
						|
					// Two bits of our cube index are obtained by looking at the cube index for
 | 
						|
					// the previous row and copying two of those bits into their new positions.
 | 
						|
					uint8_t uPreviousCellIndexY = pPreviousRowCellIndices(uXRegSpace);
 | 
						|
					uPreviousCellIndexY &= 204; //204 = 128+64+8+4
 | 
						|
					uPreviousCellIndexY >>= 2;
 | 
						|
					uCellIndex |= uPreviousCellIndexY;
 | 
						|
 | 
						|
					// One bit of our cube index are obtained by looking at the cube index for
 | 
						|
					// the previous cell and copying one of those bits into it's new position.
 | 
						|
					uint8_t UPreviousCellIndexX = uPreviousCellIndex;
 | 
						|
					UPreviousCellIndexX &= 170; //170 = 128+32+8+2
 | 
						|
					UPreviousCellIndexX >>= 1;
 | 
						|
					uCellIndex |= UPreviousCellIndexX;
 | 
						|
 | 
						|
					// The last bit of our cube index is obtained by looking
 | 
						|
					// at the relevant voxel and comparing it to the threshold
 | 
						|
					typename VolumeType::VoxelType v111 = sampler.getVoxel();
 | 
						|
					if (controller.convertToDensity(v111) < tThreshold) uCellIndex |= 128;
 | 
						|
 | 
						|
					// The current value becomes the previous value, ready for the next iteration.
 | 
						|
					uPreviousCellIndex = uCellIndex;
 | 
						|
					pPreviousRowCellIndices(uXRegSpace) = uCellIndex;
 | 
						|
					pPreviousSliceCellIndices(uXRegSpace, uYRegSpace) = uCellIndex;
 | 
						|
 | 
						|
					// 12 bits of uEdge determine whether a vertex is placed on each of the 12 edges of the cell.
 | 
						|
					uint16_t uEdge = edgeTable[uCellIndex];
 | 
						|
 | 
						|
					// Test whether any vertices and indices should be generated for the current cell (i.e. it is occupied).
 | 
						|
					// Performance note: This condition is usually false because most cells in a volume are completely above
 | 
						|
					// or below the threshold and hence unoccupied. However, even when it is always false (testing on an empty
 | 
						|
					// volume) it still incurs significant overhead, probably because the code is large and bloats the for loop
 | 
						|
					// which contains it. On my empty volume test case the code as given runs in 34ms, but if I replace the
 | 
						|
					// condition with 'false' it runs in 24ms and gives the same output (i.e. none).
 | 
						|
					//
 | 
						|
					// An improvement is to move the code into a seperate function which does speed things up (30ms), but this
 | 
						|
					// is messy as the function needs to be passed about 10 differnt parameters, probably adding some overhead 
 | 
						|
					// in its self. This does indeed seem to slow down the case when cells are occupied, by about 10-20%.
 | 
						|
					//
 | 
						|
					// Overall I don't know the right solution, but I'm leaving the code as-is to avoid making it messy. If we
 | 
						|
					// can reduce the number of parameters which need to be passed then it might be worth moving it into a
 | 
						|
					// function, or otherwise it may simply be worth trying to shorten the code (e.g. adding other function
 | 
						|
					// calls). For now we will leave it as-is, until we have more information from real-world profiling.
 | 
						|
					if (uEdge != 0)
 | 
						|
					{
 | 
						|
						auto v111Density = controller.convertToDensity(v111);
 | 
						|
 | 
						|
						// Performance note: Computing normals is one of the bottlencks in the mesh generation process. The
 | 
						|
						// central difference approach actually samples the same voxel more than once as we call it on two
 | 
						|
						// adjacent voxels. Perhaps we could expand this and eliminate dupicates in the future. Alternatively, 
 | 
						|
						// we could compute vertex normals from adjacent face normals instead of via central differencing, 
 | 
						|
						// but not for vertices on the edge of the region (as this causes visual discontinities).
 | 
						|
						const Vector3DFloat n000 = computeCentralDifferenceGradient(sampler, controller);
 | 
						|
 | 
						|
						/* Find the vertices where the surface intersects the cube */
 | 
						|
						if ((uEdge & 64) && (uXRegSpace > 0))
 | 
						|
						{
 | 
						|
							sampler.moveNegativeX();
 | 
						|
							typename VolumeType::VoxelType v011 = sampler.getVoxel();
 | 
						|
							auto v011Density = controller.convertToDensity(v011);
 | 
						|
							const float fInterp = static_cast<float>(tThreshold - v011Density) / static_cast<float>(v111Density - v011Density);
 | 
						|
 | 
						|
							// Compute the position
 | 
						|
							const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace - 1) + fInterp, static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace));
 | 
						|
 | 
						|
							// Compute the normal
 | 
						|
							const Vector3DFloat n100 = computeCentralDifferenceGradient(sampler, controller);
 | 
						|
							Vector3DFloat v3dNormal = (n100*fInterp) + (n000*(1 - fInterp));
 | 
						|
 | 
						|
							// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
 | 
						|
							// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
 | 
						|
							if (v3dNormal.lengthSquared() > 0.000001f)
 | 
						|
							{
 | 
						|
								v3dNormal.normalise();
 | 
						|
							}
 | 
						|
 | 
						|
							// Allow the controller to decide how the material should be derived from the voxels.
 | 
						|
							const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v011, v111, fInterp);
 | 
						|
 | 
						|
							MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
 | 
						|
							const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
 | 
						|
							surfaceVertex.encodedPosition = v3dScaledPosition;
 | 
						|
							surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
 | 
						|
							surfaceVertex.data = uMaterial;
 | 
						|
 | 
						|
							const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
 | 
						|
							pIndices(uXRegSpace, uYRegSpace).setX(uLastVertexIndex);
 | 
						|
 | 
						|
							sampler.movePositiveX();
 | 
						|
						}
 | 
						|
						if ((uEdge & 32) && (uYRegSpace > 0))
 | 
						|
						{
 | 
						|
							sampler.moveNegativeY();
 | 
						|
							typename VolumeType::VoxelType v101 = sampler.getVoxel();
 | 
						|
							auto v101Density = controller.convertToDensity(v101);
 | 
						|
							const float fInterp = static_cast<float>(tThreshold - v101Density) / static_cast<float>(v111Density - v101Density);
 | 
						|
 | 
						|
							// Compute the position
 | 
						|
							const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace - 1) + fInterp, static_cast<float>(uZRegSpace));
 | 
						|
 | 
						|
							// Compute the normal
 | 
						|
							const Vector3DFloat n010 = computeCentralDifferenceGradient(sampler, controller);
 | 
						|
							Vector3DFloat v3dNormal = (n010*fInterp) + (n000*(1 - fInterp));
 | 
						|
 | 
						|
							// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
 | 
						|
							// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
 | 
						|
							if (v3dNormal.lengthSquared() > 0.000001f)
 | 
						|
							{
 | 
						|
								v3dNormal.normalise();
 | 
						|
							}
 | 
						|
 | 
						|
							// Allow the controller to decide how the material should be derived from the voxels.
 | 
						|
							const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v101, v111, fInterp);
 | 
						|
 | 
						|
							MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
 | 
						|
							const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
 | 
						|
							surfaceVertex.encodedPosition = v3dScaledPosition;
 | 
						|
							surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
 | 
						|
							surfaceVertex.data = uMaterial;
 | 
						|
 | 
						|
							uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
 | 
						|
							pIndices(uXRegSpace, uYRegSpace).setY(uLastVertexIndex);
 | 
						|
 | 
						|
							sampler.movePositiveY();
 | 
						|
						}
 | 
						|
						if ((uEdge & 1024) && (uZRegSpace > 0))
 | 
						|
						{
 | 
						|
							sampler.moveNegativeZ();
 | 
						|
							typename VolumeType::VoxelType v110 = sampler.getVoxel();
 | 
						|
							auto v110Density = controller.convertToDensity(v110);
 | 
						|
							const float fInterp = static_cast<float>(tThreshold - v110Density) / static_cast<float>(v111Density - v110Density);
 | 
						|
 | 
						|
							// Compute the position
 | 
						|
							const Vector3DFloat v3dPosition(static_cast<float>(uXRegSpace), static_cast<float>(uYRegSpace), static_cast<float>(uZRegSpace - 1) + fInterp);
 | 
						|
 | 
						|
							// Compute the normal
 | 
						|
							const Vector3DFloat n001 = computeCentralDifferenceGradient(sampler, controller);
 | 
						|
							Vector3DFloat v3dNormal = (n001*fInterp) + (n000*(1 - fInterp));
 | 
						|
 | 
						|
							// The gradient for a voxel can be zero (e.g. solid voxel surrounded by empty ones) and so
 | 
						|
							// the interpolated normal can also be zero (e.g. a grid of alternating solid and empty voxels).
 | 
						|
							if (v3dNormal.lengthSquared() > 0.000001f)
 | 
						|
							{
 | 
						|
								v3dNormal.normalise();
 | 
						|
							}
 | 
						|
 | 
						|
							// Allow the controller to decide how the material should be derived from the voxels.
 | 
						|
							const typename VolumeType::VoxelType uMaterial = controller.blendMaterials(v110, v111, fInterp);
 | 
						|
 | 
						|
							MarchingCubesVertex<typename VolumeType::VoxelType> surfaceVertex;
 | 
						|
							const Vector3DUint16 v3dScaledPosition(static_cast<uint16_t>(v3dPosition.getX() * 256.0f), static_cast<uint16_t>(v3dPosition.getY() * 256.0f), static_cast<uint16_t>(v3dPosition.getZ() * 256.0f));
 | 
						|
							surfaceVertex.encodedPosition = v3dScaledPosition;
 | 
						|
							surfaceVertex.encodedNormal = encodeNormal(v3dNormal);
 | 
						|
							surfaceVertex.data = uMaterial;
 | 
						|
 | 
						|
							const uint32_t uLastVertexIndex = result->addVertex(surfaceVertex);
 | 
						|
							pIndices(uXRegSpace, uYRegSpace).setZ(uLastVertexIndex);
 | 
						|
 | 
						|
							sampler.movePositiveZ();
 | 
						|
						}
 | 
						|
 | 
						|
						// Now output the indices. For the first row, column or slice there aren't
 | 
						|
						// any (the region size in cells is one less than the region size in voxels)
 | 
						|
						if ((uXRegSpace != 0) && (uYRegSpace != 0) && (uZRegSpace != 0))
 | 
						|
						{
 | 
						|
 | 
						|
							int32_t indlist[12];
 | 
						|
 | 
						|
							/* Find the vertices where the surface intersects the cube */
 | 
						|
							if (uEdge & 1)
 | 
						|
							{
 | 
						|
								indlist[0] = pPreviousIndices(uXRegSpace, uYRegSpace - 1).getX();
 | 
						|
							}
 | 
						|
							if (uEdge & 2)
 | 
						|
							{
 | 
						|
								indlist[1] = pPreviousIndices(uXRegSpace, uYRegSpace).getY();
 | 
						|
							}
 | 
						|
							if (uEdge & 4)
 | 
						|
							{
 | 
						|
								indlist[2] = pPreviousIndices(uXRegSpace, uYRegSpace).getX();
 | 
						|
							}
 | 
						|
							if (uEdge & 8)
 | 
						|
							{
 | 
						|
								indlist[3] = pPreviousIndices(uXRegSpace - 1, uYRegSpace).getY();
 | 
						|
							}
 | 
						|
							if (uEdge & 16)
 | 
						|
							{
 | 
						|
								indlist[4] = pIndices(uXRegSpace, uYRegSpace - 1).getX();
 | 
						|
							}
 | 
						|
							if (uEdge & 32)
 | 
						|
							{
 | 
						|
								indlist[5] = pIndices(uXRegSpace, uYRegSpace).getY();
 | 
						|
							}
 | 
						|
							if (uEdge & 64)
 | 
						|
							{
 | 
						|
								indlist[6] = pIndices(uXRegSpace, uYRegSpace).getX();
 | 
						|
							}
 | 
						|
							if (uEdge & 128)
 | 
						|
							{
 | 
						|
								indlist[7] = pIndices(uXRegSpace - 1, uYRegSpace).getY();
 | 
						|
							}
 | 
						|
							if (uEdge & 256)
 | 
						|
							{
 | 
						|
								indlist[8] = pIndices(uXRegSpace - 1, uYRegSpace - 1).getZ();
 | 
						|
							}
 | 
						|
							if (uEdge & 512)
 | 
						|
							{
 | 
						|
								indlist[9] = pIndices(uXRegSpace, uYRegSpace - 1).getZ();
 | 
						|
							}
 | 
						|
							if (uEdge & 1024)
 | 
						|
							{
 | 
						|
								indlist[10] = pIndices(uXRegSpace, uYRegSpace).getZ();
 | 
						|
							}
 | 
						|
							if (uEdge & 2048)
 | 
						|
							{
 | 
						|
								indlist[11] = pIndices(uXRegSpace - 1, uYRegSpace).getZ();
 | 
						|
							}
 | 
						|
 | 
						|
							for (int i = 0; triTable[uCellIndex][i] != -1; i += 3)
 | 
						|
							{
 | 
						|
								const int32_t ind0 = indlist[triTable[uCellIndex][i]];
 | 
						|
								const int32_t ind1 = indlist[triTable[uCellIndex][i + 1]];
 | 
						|
								const int32_t ind2 = indlist[triTable[uCellIndex][i + 2]];
 | 
						|
 | 
						|
								if ((ind0 != -1) && (ind1 != -1) && (ind2 != -1))
 | 
						|
								{
 | 
						|
									result->addTriangle(ind0, ind1, ind2);
 | 
						|
								}
 | 
						|
							} // For each triangle
 | 
						|
						}
 | 
						|
					} // For each cell
 | 
						|
					sampler.movePositiveX();
 | 
						|
				} // For X
 | 
						|
				startOfRow.movePositiveY();
 | 
						|
			} // For Y
 | 
						|
			startOfSlice.movePositiveZ();
 | 
						|
 | 
						|
			pIndices.swap(pPreviousIndices);
 | 
						|
		} // For Z
 | 
						|
 | 
						|
		result->setOffset(region.getLowerCorner());
 | 
						|
 | 
						|
		POLYVOX_LOG_TRACE("Marching cubes surface extraction took ", timer.elapsedTimeInMilliSeconds(),
 | 
						|
			"ms (Region size = ", region.getWidthInVoxels(), "x", region.getHeightInVoxels(),
 | 
						|
			"x", region.getDepthInVoxels(), ")");
 | 
						|
	}		
 | 
						|
}
 |