build: More build fixes and cleanups

This commit is contained in:
Arun Raghavan 2015-10-13 22:52:52 +05:30
parent 65a2860806
commit 7fcd4d2df5
19 changed files with 2130 additions and 138 deletions

View File

@ -1,5 +1,12 @@
SUBDIRS = base common_audio system_wrappers modules
SUBDIRS = . base common_audio system_wrappers modules
noinst_HEADERS = common.h
noinst_HEADERS = common.h \
common_types.h \
typedefs.h
noinst_LTLIBRARIES = libwebrtc.la
libwebrtc_la_SOURCES = common_types.cc
libwebrtc_la_CXXFLAGS = $(AM_CXXFLAGS) $(COMMON_CXXFLAGS)
EXTRA_DIST = BUILD.gn PATENTS LICENSE_THIRD_PARTY

View File

@ -3,7 +3,6 @@ noinst_LTLIBRARIES = libbase.la
noinst_HEADERS = arraysize.h \
atomicops.h \
basictypes.h \
checks.h \
constructormagic.h \
safe_conversions.h \
safe_conversions_impl.h \
@ -13,6 +12,8 @@ noinst_HEADERS = arraysize.h \
libbase_la_SOURCES = criticalsection.cc \
criticalsection.h \
checks.cc \
checks.h \
event.cc \
event.h \
platform_thread.cc \

127
webrtc/base/checks.cc Normal file
View File

@ -0,0 +1,127 @@
/*
* Copyright 2006 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Most of this was borrowed (with minor modifications) from V8's and Chromium's
// src/base/logging.cc.
// Use the C++ version to provide __GLIBCXX__.
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#if defined(__GLIBCXX__) && !defined(__UCLIBC__)
#include <cxxabi.h>
#include <execinfo.h>
#endif
#if defined(WEBRTC_ANDROID)
#define LOG_TAG "rtc"
#include <android/log.h> // NOLINT
#endif
#include "webrtc/base/checks.h"
#if defined(_MSC_VER)
// Warning C4722: destructor never returns, potential memory leak.
// FatalMessage's dtor very intentionally aborts.
#pragma warning(disable:4722)
#endif
namespace rtc {
void VPrintError(const char* format, va_list args) {
#if defined(WEBRTC_ANDROID)
__android_log_vprint(ANDROID_LOG_ERROR, LOG_TAG, format, args);
#else
vfprintf(stderr, format, args);
#endif
}
void PrintError(const char* format, ...) {
va_list args;
va_start(args, format);
VPrintError(format, args);
va_end(args);
}
// TODO(ajm): This works on Mac (although the parsing fails) but I don't seem
// to get usable symbols on Linux. This is copied from V8. Chromium has a more
// advanced stace trace system; also more difficult to copy.
void DumpBacktrace() {
#if defined(__GLIBCXX__) && !defined(__UCLIBC__)
void* trace[100];
int size = backtrace(trace, sizeof(trace) / sizeof(*trace));
char** symbols = backtrace_symbols(trace, size);
PrintError("\n==== C stack trace ===============================\n\n");
if (size == 0) {
PrintError("(empty)\n");
} else if (symbols == NULL) {
PrintError("(no symbols)\n");
} else {
for (int i = 1; i < size; ++i) {
char mangled[201];
if (sscanf(symbols[i], "%*[^(]%*[(]%200[^)+]", mangled) == 1) { // NOLINT
PrintError("%2d: ", i);
int status;
size_t length;
char* demangled = abi::__cxa_demangle(mangled, NULL, &length, &status);
PrintError("%s\n", demangled != NULL ? demangled : mangled);
free(demangled);
} else {
// If parsing failed, at least print the unparsed symbol.
PrintError("%s\n", symbols[i]);
}
}
}
free(symbols);
#endif
}
FatalMessage::FatalMessage(const char* file, int line) {
Init(file, line);
}
FatalMessage::FatalMessage(const char* file, int line, std::string* result) {
Init(file, line);
stream_ << "Check failed: " << *result << std::endl << "# ";
delete result;
}
NO_RETURN FatalMessage::~FatalMessage() {
fflush(stdout);
fflush(stderr);
stream_ << std::endl << "#" << std::endl;
PrintError(stream_.str().c_str());
DumpBacktrace();
fflush(stderr);
abort();
}
void FatalMessage::Init(const char* file, int line) {
stream_ << std::endl << std::endl << "#" << std::endl << "# Fatal error in "
<< file << ", line " << line << std::endl << "# ";
}
// MSVC doesn't like complex extern templates and DLLs.
#if !defined(COMPILER_MSVC)
// Explicit instantiations for commonly used comparisons.
template std::string* MakeCheckOpString<int, int>(
const int&, const int&, const char* names);
template std::string* MakeCheckOpString<unsigned long, unsigned long>(
const unsigned long&, const unsigned long&, const char* names);
template std::string* MakeCheckOpString<unsigned long, unsigned int>(
const unsigned long&, const unsigned int&, const char* names);
template std::string* MakeCheckOpString<unsigned int, unsigned long>(
const unsigned int&, const unsigned long&, const char* names);
template std::string* MakeCheckOpString<std::string, std::string>(
const std::string&, const std::string&, const char* name);
#endif
} // namespace rtc

View File

@ -69,6 +69,7 @@ libcommon_audio_la_SOURCES = resampler/include/push_resampler.h \
audio_converter.h \
audio_ring_buffer.cc \
audio_ring_buffer.h \
audio_util.cc \
blocker.cc \
blocker.h \
channel_buffer.cc \

View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/typedefs.h"
namespace webrtc {
void FloatToS16(const float* src, size_t size, int16_t* dest) {
for (size_t i = 0; i < size; ++i)
dest[i] = FloatToS16(src[i]);
}
void S16ToFloat(const int16_t* src, size_t size, float* dest) {
for (size_t i = 0; i < size; ++i)
dest[i] = S16ToFloat(src[i]);
}
void FloatS16ToS16(const float* src, size_t size, int16_t* dest) {
for (size_t i = 0; i < size; ++i)
dest[i] = FloatS16ToS16(src[i]);
}
void FloatToFloatS16(const float* src, size_t size, float* dest) {
for (size_t i = 0; i < size; ++i)
dest[i] = FloatToFloatS16(src[i]);
}
void FloatS16ToFloat(const float* src, size_t size, float* dest) {
for (size_t i = 0; i < size; ++i)
dest[i] = FloatS16ToFloat(src[i]);
}
template <>
void DownmixInterleavedToMono<int16_t>(const int16_t* interleaved,
size_t num_frames,
int num_channels,
int16_t* deinterleaved) {
DownmixInterleavedToMonoImpl<int16_t, int32_t>(interleaved, num_frames,
num_channels, deinterleaved);
}
} // namespace webrtc

51
webrtc/common_types.cc Normal file
View File

@ -0,0 +1,51 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_types.h"
#include <string.h>
namespace webrtc {
int InStream::Rewind() { return -1; }
int OutStream::Rewind() { return -1; }
StreamDataCounters::StreamDataCounters() : first_packet_time_ms(-1) {}
RTPHeaderExtension::RTPHeaderExtension()
: hasTransmissionTimeOffset(false),
transmissionTimeOffset(0),
hasAbsoluteSendTime(false),
absoluteSendTime(0),
hasTransportSequenceNumber(false),
transportSequenceNumber(0),
hasAudioLevel(false),
voiceActivity(false),
audioLevel(0),
hasVideoRotation(false),
videoRotation(0) {
}
RTPHeader::RTPHeader()
: markerBit(false),
payloadType(0),
sequenceNumber(0),
timestamp(0),
ssrc(0),
numCSRCs(0),
paddingLength(0),
headerLength(0),
payload_type_frequency(0),
extension() {
memset(&arrOfCSRCs, 0, sizeof(arrOfCSRCs));
}
} // namespace webrtc

View File

@ -3,11 +3,18 @@ noinst_LTLIBRARIES = libaudio_coding.la
libaudio_coding_la_SOURCES = codecs/isac/main/interface/isac.h \
codecs/isac/main/source/arith_routines.c \
codecs/isac/main/source/arith_routines.h \
codecs/isac/main/source/arith_routines_hist.c \
codecs/isac/main/source/arith_routines_logist.c \
codecs/isac/main/source/codec.h \
codecs/isac/main/source/encode_lpc_swb.c \
codecs/isac/main/source/encode_lpc_swb.h \
codecs/isac/main/source/entropy_coding.c \
codecs/isac/main/source/entropy_coding.h \
codecs/isac/main/source/filter_functions.c \
codecs/isac/main/source/filterbanks.c \
codecs/isac/main/source/filterbank_tables.c \
codecs/isac/main/source/filterbank_tables.h \
codecs/isac/main/source/intialize.c \
codecs/isac/main/source/lpc_analysis.c \
codecs/isac/main/source/lpc_analysis.h \
codecs/isac/main/source/lpc_gain_swb_tables.c \
@ -21,6 +28,7 @@ libaudio_coding_la_SOURCES = codecs/isac/main/interface/isac.h \
codecs/isac/main/source/os_specific_inline.h \
codecs/isac/main/source/pitch_estimator.c \
codecs/isac/main/source/pitch_estimator.h \
codecs/isac/main/source/pitch_filter.c \
codecs/isac/main/source/pitch_gain_tables.c \
codecs/isac/main/source/pitch_gain_tables.h \
codecs/isac/main/source/pitch_lag_tables.c \

View File

@ -0,0 +1,291 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "settings.h"
#include "arith_routines.h"
/*
* code symbols into arithmetic bytestream
*/
void WebRtcIsac_EncHistMulti(Bitstr *streamdata, /* in-/output struct containing bitstream */
const int *data, /* input: data vector */
const uint16_t **cdf, /* input: array of cdf arrays */
const int N) /* input: data vector length */
{
uint32_t W_lower, W_upper;
uint32_t W_upper_LSB, W_upper_MSB;
uint8_t *stream_ptr;
uint8_t *stream_ptr_carry;
uint32_t cdf_lo, cdf_hi;
int k;
/* point to beginning of stream buffer */
stream_ptr = streamdata->stream + streamdata->stream_index;
W_upper = streamdata->W_upper;
for (k=N; k>0; k--)
{
/* fetch cdf_lower and cdf_upper from cdf tables */
cdf_lo = (uint32_t) *(*cdf + *data);
cdf_hi = (uint32_t) *(*cdf++ + *data++ + 1);
/* update interval */
W_upper_LSB = W_upper & 0x0000FFFF;
W_upper_MSB = W_upper >> 16;
W_lower = W_upper_MSB * cdf_lo;
W_lower += (W_upper_LSB * cdf_lo) >> 16;
W_upper = W_upper_MSB * cdf_hi;
W_upper += (W_upper_LSB * cdf_hi) >> 16;
/* shift interval such that it begins at zero */
W_upper -= ++W_lower;
/* add integer to bitstream */
streamdata->streamval += W_lower;
/* handle carry */
if (streamdata->streamval < W_lower)
{
/* propagate carry */
stream_ptr_carry = stream_ptr;
while (!(++(*--stream_ptr_carry)));
}
/* renormalize interval, store most significant byte of streamval and update streamval */
while ( !(W_upper & 0xFF000000) ) /* W_upper < 2^24 */
{
W_upper <<= 8;
*stream_ptr++ = (uint8_t) (streamdata->streamval >> 24);
streamdata->streamval <<= 8;
}
}
/* calculate new stream_index */
streamdata->stream_index = (int)(stream_ptr - streamdata->stream);
streamdata->W_upper = W_upper;
return;
}
/*
* function to decode more symbols from the arithmetic bytestream, using method of bisection
* cdf tables should be of size 2^k-1 (which corresponds to an alphabet size of 2^k-2)
*/
int WebRtcIsac_DecHistBisectMulti(int *data, /* output: data vector */
Bitstr *streamdata, /* in-/output struct containing bitstream */
const uint16_t **cdf, /* input: array of cdf arrays */
const uint16_t *cdf_size, /* input: array of cdf table sizes+1 (power of two: 2^k) */
const int N) /* input: data vector length */
{
uint32_t W_lower, W_upper;
uint32_t W_tmp;
uint32_t W_upper_LSB, W_upper_MSB;
uint32_t streamval;
const uint8_t *stream_ptr;
const uint16_t *cdf_ptr;
int size_tmp;
int k;
W_lower = 0; //to remove warning -DH
stream_ptr = streamdata->stream + streamdata->stream_index;
W_upper = streamdata->W_upper;
if (W_upper == 0)
/* Should not be possible in normal operation */
return -2;
if (streamdata->stream_index == 0) /* first time decoder is called for this stream */
{
/* read first word from bytestream */
streamval = *stream_ptr << 24;
streamval |= *++stream_ptr << 16;
streamval |= *++stream_ptr << 8;
streamval |= *++stream_ptr;
} else {
streamval = streamdata->streamval;
}
for (k=N; k>0; k--)
{
/* find the integer *data for which streamval lies in [W_lower+1, W_upper] */
W_upper_LSB = W_upper & 0x0000FFFF;
W_upper_MSB = W_upper >> 16;
/* start halfway the cdf range */
size_tmp = *cdf_size++ >> 1;
cdf_ptr = *cdf + (size_tmp - 1);
/* method of bisection */
for ( ;; )
{
W_tmp = W_upper_MSB * *cdf_ptr;
W_tmp += (W_upper_LSB * *cdf_ptr) >> 16;
size_tmp >>= 1;
if (size_tmp == 0) break;
if (streamval > W_tmp)
{
W_lower = W_tmp;
cdf_ptr += size_tmp;
} else {
W_upper = W_tmp;
cdf_ptr -= size_tmp;
}
}
if (streamval > W_tmp)
{
W_lower = W_tmp;
*data++ = (int)(cdf_ptr - *cdf++);
} else {
W_upper = W_tmp;
*data++ = (int)(cdf_ptr - *cdf++ - 1);
}
/* shift interval to start at zero */
W_upper -= ++W_lower;
/* add integer to bitstream */
streamval -= W_lower;
/* renormalize interval and update streamval */
while ( !(W_upper & 0xFF000000) ) /* W_upper < 2^24 */
{
/* read next byte from stream */
streamval = (streamval << 8) | *++stream_ptr;
W_upper <<= 8;
}
if (W_upper == 0)
/* Should not be possible in normal operation */
return -2;
}
streamdata->stream_index = (int)(stream_ptr - streamdata->stream);
streamdata->W_upper = W_upper;
streamdata->streamval = streamval;
/* find number of bytes in original stream (determined by current interval width) */
if ( W_upper > 0x01FFFFFF )
return streamdata->stream_index - 2;
else
return streamdata->stream_index - 1;
}
/*
* function to decode more symbols from the arithmetic bytestream, taking single step up or
* down at a time
* cdf tables can be of arbitrary size, but large tables may take a lot of iterations
*/
int WebRtcIsac_DecHistOneStepMulti(int *data, /* output: data vector */
Bitstr *streamdata, /* in-/output struct containing bitstream */
const uint16_t **cdf, /* input: array of cdf arrays */
const uint16_t *init_index, /* input: vector of initial cdf table search entries */
const int N) /* input: data vector length */
{
uint32_t W_lower, W_upper;
uint32_t W_tmp;
uint32_t W_upper_LSB, W_upper_MSB;
uint32_t streamval;
const uint8_t *stream_ptr;
const uint16_t *cdf_ptr;
int k;
stream_ptr = streamdata->stream + streamdata->stream_index;
W_upper = streamdata->W_upper;
if (W_upper == 0)
/* Should not be possible in normal operation */
return -2;
if (streamdata->stream_index == 0) /* first time decoder is called for this stream */
{
/* read first word from bytestream */
streamval = *stream_ptr << 24;
streamval |= *++stream_ptr << 16;
streamval |= *++stream_ptr << 8;
streamval |= *++stream_ptr;
} else {
streamval = streamdata->streamval;
}
for (k=N; k>0; k--)
{
/* find the integer *data for which streamval lies in [W_lower+1, W_upper] */
W_upper_LSB = W_upper & 0x0000FFFF;
W_upper_MSB = W_upper >> 16;
/* start at the specified table entry */
cdf_ptr = *cdf + (*init_index++);
W_tmp = W_upper_MSB * *cdf_ptr;
W_tmp += (W_upper_LSB * *cdf_ptr) >> 16;
if (streamval > W_tmp)
{
for ( ;; )
{
W_lower = W_tmp;
if (cdf_ptr[0]==65535)
/* range check */
return -3;
W_tmp = W_upper_MSB * *++cdf_ptr;
W_tmp += (W_upper_LSB * *cdf_ptr) >> 16;
if (streamval <= W_tmp) break;
}
W_upper = W_tmp;
*data++ = (int)(cdf_ptr - *cdf++ - 1);
} else {
for ( ;; )
{
W_upper = W_tmp;
--cdf_ptr;
if (cdf_ptr<*cdf) {
/* range check */
return -3;
}
W_tmp = W_upper_MSB * *cdf_ptr;
W_tmp += (W_upper_LSB * *cdf_ptr) >> 16;
if (streamval > W_tmp) break;
}
W_lower = W_tmp;
*data++ = (int)(cdf_ptr - *cdf++);
}
/* shift interval to start at zero */
W_upper -= ++W_lower;
/* add integer to bitstream */
streamval -= W_lower;
/* renormalize interval and update streamval */
while ( !(W_upper & 0xFF000000) ) /* W_upper < 2^24 */
{
/* read next byte from stream */
streamval = (streamval << 8) | *++stream_ptr;
W_upper <<= 8;
}
}
streamdata->stream_index = (int)(stream_ptr - streamdata->stream);
streamdata->W_upper = W_upper;
streamdata->streamval = streamval;
/* find number of bytes in original stream (determined by current interval width) */
if ( W_upper > 0x01FFFFFF )
return streamdata->stream_index - 2;
else
return streamdata->stream_index - 1;
}

View File

@ -0,0 +1,294 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* arith_routines.h
*
* This file contains functions for arithmatically encoding and
* decoding DFT coefficients.
*
*/
#include "arith_routines.h"
static const int32_t kHistEdgesQ15[51] = {
-327680, -314573, -301466, -288359, -275252, -262144, -249037, -235930, -222823, -209716,
-196608, -183501, -170394, -157287, -144180, -131072, -117965, -104858, -91751, -78644,
-65536, -52429, -39322, -26215, -13108, 0, 13107, 26214, 39321, 52428,
65536, 78643, 91750, 104857, 117964, 131072, 144179, 157286, 170393, 183500,
196608, 209715, 222822, 235929, 249036, 262144, 275251, 288358, 301465, 314572,
327680};
static const int kCdfSlopeQ0[51] = { /* Q0 */
5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 13, 23, 47, 87, 154, 315, 700, 1088,
2471, 6064, 14221, 21463, 36634, 36924, 19750, 13270, 5806, 2312,
1095, 660, 316, 145, 86, 41, 32, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 0};
static const int kCdfQ16[51] = { /* Q16 */
0, 2, 4, 6, 8, 10, 12, 14, 16, 18,
20, 22, 24, 29, 38, 57, 92, 153, 279, 559,
994, 1983, 4408, 10097, 18682, 33336, 48105, 56005, 61313, 63636,
64560, 64998, 65262, 65389, 65447, 65481, 65497, 65510, 65512, 65514,
65516, 65518, 65520, 65522, 65524, 65526, 65528, 65530, 65532, 65534,
65535};
/* function to be converted to fixed point */
static __inline uint32_t piecewise(int32_t xinQ15) {
int32_t ind, qtmp1, qtmp2, qtmp3;
uint32_t tmpUW32;
qtmp2 = xinQ15;
if (qtmp2 < kHistEdgesQ15[0]) {
qtmp2 = kHistEdgesQ15[0];
}
if (qtmp2 > kHistEdgesQ15[50]) {
qtmp2 = kHistEdgesQ15[50];
}
qtmp1 = qtmp2 - kHistEdgesQ15[0]; /* Q15 - Q15 = Q15 */
ind = (qtmp1 * 5) >> 16; /* 2^16 / 5 = 0.4 in Q15 */
/* Q15 -> Q0 */
qtmp1 = qtmp2 - kHistEdgesQ15[ind]; /* Q15 - Q15 = Q15 */
qtmp2 = kCdfSlopeQ0[ind] * qtmp1; /* Q0 * Q15 = Q15 */
qtmp3 = qtmp2>>15; /* Q15 -> Q0 */
tmpUW32 = kCdfQ16[ind] + qtmp3; /* Q0 + Q0 = Q0 */
return tmpUW32;
}
int WebRtcIsac_EncLogisticMulti2(
Bitstr *streamdata, /* in-/output struct containing bitstream */
int16_t *dataQ7, /* input: data vector */
const uint16_t *envQ8, /* input: side info vector defining the width of the pdf */
const int N, /* input: data vector length / 2 */
const int16_t isSWB12kHz)
{
uint32_t W_lower, W_upper;
uint32_t W_upper_LSB, W_upper_MSB;
uint8_t *stream_ptr;
uint8_t *maxStreamPtr;
uint8_t *stream_ptr_carry;
uint32_t cdf_lo, cdf_hi;
int k;
/* point to beginning of stream buffer */
stream_ptr = streamdata->stream + streamdata->stream_index;
W_upper = streamdata->W_upper;
maxStreamPtr = streamdata->stream + STREAM_SIZE_MAX_60 - 1;
for (k = 0; k < N; k++)
{
/* compute cdf_lower and cdf_upper by evaluating the piecewise linear cdf */
cdf_lo = piecewise((*dataQ7 - 64) * *envQ8);
cdf_hi = piecewise((*dataQ7 + 64) * *envQ8);
/* test and clip if probability gets too small */
while (cdf_lo+1 >= cdf_hi) {
/* clip */
if (*dataQ7 > 0) {
*dataQ7 -= 128;
cdf_hi = cdf_lo;
cdf_lo = piecewise((*dataQ7 - 64) * *envQ8);
} else {
*dataQ7 += 128;
cdf_lo = cdf_hi;
cdf_hi = piecewise((*dataQ7 + 64) * *envQ8);
}
}
dataQ7++;
// increment only once per 4 iterations for SWB-16kHz or WB
// increment only once per 2 iterations for SWB-12kHz
envQ8 += (isSWB12kHz)? (k & 1):((k & 1) & (k >> 1));
/* update interval */
W_upper_LSB = W_upper & 0x0000FFFF;
W_upper_MSB = W_upper >> 16;
W_lower = W_upper_MSB * cdf_lo;
W_lower += (W_upper_LSB * cdf_lo) >> 16;
W_upper = W_upper_MSB * cdf_hi;
W_upper += (W_upper_LSB * cdf_hi) >> 16;
/* shift interval such that it begins at zero */
W_upper -= ++W_lower;
/* add integer to bitstream */
streamdata->streamval += W_lower;
/* handle carry */
if (streamdata->streamval < W_lower)
{
/* propagate carry */
stream_ptr_carry = stream_ptr;
while (!(++(*--stream_ptr_carry)));
}
/* renormalize interval, store most significant byte of streamval and update streamval */
while ( !(W_upper & 0xFF000000) ) /* W_upper < 2^24 */
{
W_upper <<= 8;
*stream_ptr++ = (uint8_t) (streamdata->streamval >> 24);
if(stream_ptr > maxStreamPtr)
{
return -ISAC_DISALLOWED_BITSTREAM_LENGTH;
}
streamdata->streamval <<= 8;
}
}
/* calculate new stream_index */
streamdata->stream_index = (int)(stream_ptr - streamdata->stream);
streamdata->W_upper = W_upper;
return 0;
}
int WebRtcIsac_DecLogisticMulti2(
int16_t *dataQ7, /* output: data vector */
Bitstr *streamdata, /* in-/output struct containing bitstream */
const uint16_t *envQ8, /* input: side info vector defining the width of the pdf */
const int16_t *ditherQ7,/* input: dither vector */
const int N, /* input: data vector length */
const int16_t isSWB12kHz)
{
uint32_t W_lower, W_upper;
uint32_t W_tmp;
uint32_t W_upper_LSB, W_upper_MSB;
uint32_t streamval;
const uint8_t *stream_ptr;
uint32_t cdf_tmp;
int16_t candQ7;
int k;
stream_ptr = streamdata->stream + streamdata->stream_index;
W_upper = streamdata->W_upper;
if (streamdata->stream_index == 0) /* first time decoder is called for this stream */
{
/* read first word from bytestream */
streamval = *stream_ptr << 24;
streamval |= *++stream_ptr << 16;
streamval |= *++stream_ptr << 8;
streamval |= *++stream_ptr;
} else {
streamval = streamdata->streamval;
}
for (k = 0; k < N; k++)
{
/* find the integer *data for which streamval lies in [W_lower+1, W_upper] */
W_upper_LSB = W_upper & 0x0000FFFF;
W_upper_MSB = W_upper >> 16;
/* find first candidate by inverting the logistic cdf */
candQ7 = - *ditherQ7 + 64;
cdf_tmp = piecewise(candQ7 * *envQ8);
W_tmp = W_upper_MSB * cdf_tmp;
W_tmp += (W_upper_LSB * cdf_tmp) >> 16;
if (streamval > W_tmp)
{
W_lower = W_tmp;
candQ7 += 128;
cdf_tmp = piecewise(candQ7 * *envQ8);
W_tmp = W_upper_MSB * cdf_tmp;
W_tmp += (W_upper_LSB * cdf_tmp) >> 16;
while (streamval > W_tmp)
{
W_lower = W_tmp;
candQ7 += 128;
cdf_tmp = piecewise(candQ7 * *envQ8);
W_tmp = W_upper_MSB * cdf_tmp;
W_tmp += (W_upper_LSB * cdf_tmp) >> 16;
/* error check */
if (W_lower == W_tmp) return -1;
}
W_upper = W_tmp;
/* another sample decoded */
*dataQ7 = candQ7 - 64;
}
else
{
W_upper = W_tmp;
candQ7 -= 128;
cdf_tmp = piecewise(candQ7 * *envQ8);
W_tmp = W_upper_MSB * cdf_tmp;
W_tmp += (W_upper_LSB * cdf_tmp) >> 16;
while ( !(streamval > W_tmp) )
{
W_upper = W_tmp;
candQ7 -= 128;
cdf_tmp = piecewise(candQ7 * *envQ8);
W_tmp = W_upper_MSB * cdf_tmp;
W_tmp += (W_upper_LSB * cdf_tmp) >> 16;
/* error check */
if (W_upper == W_tmp) return -1;
}
W_lower = W_tmp;
/* another sample decoded */
*dataQ7 = candQ7 + 64;
}
ditherQ7++;
dataQ7++;
// increment only once per 4 iterations for SWB-16kHz or WB
// increment only once per 2 iterations for SWB-12kHz
envQ8 += (isSWB12kHz)? (k & 1):((k & 1) & (k >> 1));
/* shift interval to start at zero */
W_upper -= ++W_lower;
/* add integer to bitstream */
streamval -= W_lower;
/* renormalize interval and update streamval */
while ( !(W_upper & 0xFF000000) ) /* W_upper < 2^24 */
{
/* read next byte from stream */
streamval = (streamval << 8) | *++stream_ptr;
W_upper <<= 8;
}
}
streamdata->stream_index = (int)(stream_ptr - streamdata->stream);
streamdata->W_upper = W_upper;
streamdata->streamval = streamval;
/* find number of bytes in original stream (determined by current interval width) */
if ( W_upper > 0x01FFFFFF )
return streamdata->stream_index - 2;
else
return streamdata->stream_index - 1;
}

View File

@ -0,0 +1,263 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory.h>
#include <string.h>
#ifdef WEBRTC_ANDROID
#include <stdlib.h>
#endif
#include "pitch_estimator.h"
#include "lpc_analysis.h"
#include "codec.h"
void WebRtcIsac_AllPoleFilter(double* InOut,
double* Coef,
size_t lengthInOut,
int orderCoef) {
/* the state of filter is assumed to be in InOut[-1] to InOut[-orderCoef] */
double scal;
double sum;
size_t n;
int k;
//if (fabs(Coef[0]-1.0)<0.001) {
if ( (Coef[0] > 0.9999) && (Coef[0] < 1.0001) )
{
for(n = 0; n < lengthInOut; n++)
{
sum = Coef[1] * InOut[-1];
for(k = 2; k <= orderCoef; k++){
sum += Coef[k] * InOut[-k];
}
*InOut++ -= sum;
}
}
else
{
scal = 1.0 / Coef[0];
for(n=0;n<lengthInOut;n++)
{
*InOut *= scal;
for(k=1;k<=orderCoef;k++){
*InOut -= scal*Coef[k]*InOut[-k];
}
InOut++;
}
}
}
void WebRtcIsac_AllZeroFilter(double* In,
double* Coef,
size_t lengthInOut,
int orderCoef,
double* Out) {
/* the state of filter is assumed to be in In[-1] to In[-orderCoef] */
size_t n;
int k;
double tmp;
for(n = 0; n < lengthInOut; n++)
{
tmp = In[0] * Coef[0];
for(k = 1; k <= orderCoef; k++){
tmp += Coef[k] * In[-k];
}
*Out++ = tmp;
In++;
}
}
void WebRtcIsac_ZeroPoleFilter(double* In,
double* ZeroCoef,
double* PoleCoef,
size_t lengthInOut,
int orderCoef,
double* Out) {
/* the state of the zero section is assumed to be in In[-1] to In[-orderCoef] */
/* the state of the pole section is assumed to be in Out[-1] to Out[-orderCoef] */
WebRtcIsac_AllZeroFilter(In,ZeroCoef,lengthInOut,orderCoef,Out);
WebRtcIsac_AllPoleFilter(Out,PoleCoef,lengthInOut,orderCoef);
}
void WebRtcIsac_AutoCorr(double* r, const double* x, size_t N, size_t order) {
size_t lag, n;
double sum, prod;
const double *x_lag;
for (lag = 0; lag <= order; lag++)
{
sum = 0.0f;
x_lag = &x[lag];
prod = x[0] * x_lag[0];
for (n = 1; n < N - lag; n++) {
sum += prod;
prod = x[n] * x_lag[n];
}
sum += prod;
r[lag] = sum;
}
}
void WebRtcIsac_BwExpand(double* out, double* in, double coef, size_t length) {
size_t i;
double chirp;
chirp = coef;
out[0] = in[0];
for (i = 1; i < length; i++) {
out[i] = chirp * in[i];
chirp *= coef;
}
}
void WebRtcIsac_WeightingFilter(const double* in,
double* weiout,
double* whiout,
WeightFiltstr* wfdata) {
double tmpbuffer[PITCH_FRAME_LEN + PITCH_WLPCBUFLEN];
double corr[PITCH_WLPCORDER+1], rc[PITCH_WLPCORDER+1];
double apol[PITCH_WLPCORDER+1], apolr[PITCH_WLPCORDER+1];
double rho=0.9, *inp, *dp, *dp2;
double whoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
double weoutbuf[PITCH_WLPCBUFLEN + PITCH_WLPCORDER];
double *weo, *who, opol[PITCH_WLPCORDER+1], ext[PITCH_WLPCWINLEN];
int k, n, endpos, start;
/* Set up buffer and states */
memcpy(tmpbuffer, wfdata->buffer, sizeof(double) * PITCH_WLPCBUFLEN);
memcpy(tmpbuffer+PITCH_WLPCBUFLEN, in, sizeof(double) * PITCH_FRAME_LEN);
memcpy(wfdata->buffer, tmpbuffer+PITCH_FRAME_LEN, sizeof(double) * PITCH_WLPCBUFLEN);
dp=weoutbuf;
dp2=whoutbuf;
for (k=0;k<PITCH_WLPCORDER;k++) {
*dp++ = wfdata->weostate[k];
*dp2++ = wfdata->whostate[k];
opol[k]=0.0;
}
opol[0]=1.0;
opol[PITCH_WLPCORDER]=0.0;
weo=dp;
who=dp2;
endpos=PITCH_WLPCBUFLEN + PITCH_SUBFRAME_LEN;
inp=tmpbuffer + PITCH_WLPCBUFLEN;
for (n=0; n<PITCH_SUBFRAMES; n++) {
/* Windowing */
start=endpos-PITCH_WLPCWINLEN;
for (k=0; k<PITCH_WLPCWINLEN; k++) {
ext[k]=wfdata->window[k]*tmpbuffer[start+k];
}
/* Get LPC polynomial */
WebRtcIsac_AutoCorr(corr, ext, PITCH_WLPCWINLEN, PITCH_WLPCORDER);
corr[0]=1.01*corr[0]+1.0; /* White noise correction */
WebRtcIsac_LevDurb(apol, rc, corr, PITCH_WLPCORDER);
WebRtcIsac_BwExpand(apolr, apol, rho, PITCH_WLPCORDER+1);
/* Filtering */
WebRtcIsac_ZeroPoleFilter(inp, apol, apolr, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, weo);
WebRtcIsac_ZeroPoleFilter(inp, apolr, opol, PITCH_SUBFRAME_LEN, PITCH_WLPCORDER, who);
inp+=PITCH_SUBFRAME_LEN;
endpos+=PITCH_SUBFRAME_LEN;
weo+=PITCH_SUBFRAME_LEN;
who+=PITCH_SUBFRAME_LEN;
}
/* Export filter states */
for (k=0;k<PITCH_WLPCORDER;k++) {
wfdata->weostate[k]=weoutbuf[PITCH_FRAME_LEN+k];
wfdata->whostate[k]=whoutbuf[PITCH_FRAME_LEN+k];
}
/* Export output data */
memcpy(weiout, weoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
memcpy(whiout, whoutbuf+PITCH_WLPCORDER, sizeof(double) * PITCH_FRAME_LEN);
}
static const double APupper[ALLPASSSECTIONS] = {0.0347, 0.3826};
static const double APlower[ALLPASSSECTIONS] = {0.1544, 0.744};
void WebRtcIsac_AllpassFilterForDec(double* InOut,
const double* APSectionFactors,
size_t lengthInOut,
double* FilterState) {
//This performs all-pass filtering--a series of first order all-pass sections are used
//to filter the input in a cascade manner.
size_t n,j;
double temp;
for (j=0; j<ALLPASSSECTIONS; j++){
for (n=0;n<lengthInOut;n+=2){
temp = InOut[n]; //store input
InOut[n] = FilterState[j] + APSectionFactors[j]*temp;
FilterState[j] = -APSectionFactors[j]*InOut[n] + temp;
}
}
}
void WebRtcIsac_DecimateAllpass(const double* in,
double* state_in,
size_t N,
double* out) {
size_t n;
double data_vec[PITCH_FRAME_LEN];
/* copy input */
memcpy(data_vec+1, in, sizeof(double) * (N-1));
data_vec[0] = state_in[2*ALLPASSSECTIONS]; //the z^(-1) state
state_in[2*ALLPASSSECTIONS] = in[N-1];
WebRtcIsac_AllpassFilterForDec(data_vec+1, APupper, N, state_in);
WebRtcIsac_AllpassFilterForDec(data_vec, APlower, N, state_in+ALLPASSSECTIONS);
for (n=0;n<N/2;n++)
out[n] = data_vec[2*n] + data_vec[2*n+1];
}
/* create high-pass filter ocefficients
* z = 0.998 * exp(j*2*pi*35/8000);
* p = 0.94 * exp(j*2*pi*140/8000);
* HP_b = [1, -2*real(z), abs(z)^2];
* HP_a = [1, -2*real(p), abs(p)^2]; */
static const double a_coef[2] = { 1.86864659625574, -0.88360000000000};
static const double b_coef[2] = {-1.99524591718270, 0.99600400000000};
/* second order high-pass filter */
void WebRtcIsac_Highpass(const double* in,
double* out,
double* state,
size_t N) {
size_t k;
for (k=0; k<N; k++) {
*out = *in + state[1];
state[1] = state[0] + b_coef[0] * *in + a_coef[0] * *out;
state[0] = b_coef[1] * *in++ + a_coef[1] * *out++;
}
}

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* filterbank_tables.c*/
/* This file contains variables that are used in filterbanks.c*/
#include "filterbank_tables.h"
#include "settings.h"
/* The composite all-pass filter factors */
const float WebRtcIsac_kCompositeApFactorsFloat[4] = {
0.03470000000000f, 0.15440000000000f, 0.38260000000000f, 0.74400000000000f};
/* The upper channel all-pass filter factors */
const float WebRtcIsac_kUpperApFactorsFloat[2] = {
0.03470000000000f, 0.38260000000000f};
/* The lower channel all-pass filter factors */
const float WebRtcIsac_kLowerApFactorsFloat[2] = {
0.15440000000000f, 0.74400000000000f};
/* The matrix for transforming the backward composite state to upper channel state */
const float WebRtcIsac_kTransform1Float[8] = {
-0.00158678506084f, 0.00127157815343f, -0.00104805672709f, 0.00084837248079f,
0.00134467983258f, -0.00107756549387f, 0.00088814793277f, -0.00071893072525f};
/* The matrix for transforming the backward composite state to lower channel state */
const float WebRtcIsac_kTransform2Float[8] = {
-0.00170686041697f, 0.00136780109829f, -0.00112736532350f, 0.00091257055385f,
0.00103094281812f, -0.00082615076557f, 0.00068092756088f, -0.00055119165484f};

View File

@ -0,0 +1,46 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* filterbank_tables.h
*
* Header file for variables that are defined in
* filterbank_tables.c.
*
*/
#ifndef WEBRTC_MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTERBANK_TABLES_H_
#define WEBRTC_MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTERBANK_TABLES_H_
#include "structs.h"
/********************* Coefficient Tables ************************/
/* The number of composite all-pass filter factors */
#define NUMBEROFCOMPOSITEAPSECTIONS 4
/* The number of all-pass filter factors in an upper or lower channel*/
#define NUMBEROFCHANNELAPSECTIONS 2
/* The composite all-pass filter factors */
extern const float WebRtcIsac_kCompositeApFactorsFloat[4];
/* The upper channel all-pass filter factors */
extern const float WebRtcIsac_kUpperApFactorsFloat[2];
/* The lower channel all-pass filter factors */
extern const float WebRtcIsac_kLowerApFactorsFloat[2];
/* The matrix for transforming the backward composite state to upper channel state */
extern const float WebRtcIsac_kTransform1Float[8];
/* The matrix for transforming the backward composite state to lower channel state */
extern const float WebRtcIsac_kTransform2Float[8];
#endif /* WEBRTC_MODULES_AUDIO_CODING_CODECS_ISAC_MAIN_SOURCE_FILTERBANK_TABLES_H_ */

View File

@ -0,0 +1,346 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* filterbanks.c
*
* This file contains function WebRtcIsac_AllPassFilter2Float,
* WebRtcIsac_SplitAndFilter, and WebRtcIsac_FilterAndCombine
* which implement filterbanks that produce decimated lowpass and
* highpass versions of a signal, and performs reconstruction.
*
*/
#include "settings.h"
#include "filterbank_tables.h"
#include "codec.h"
/* This function performs all-pass filtering--a series of first order all-pass
* sections are used to filter the input in a cascade manner.
* The input is overwritten!!
*/
static void WebRtcIsac_AllPassFilter2Float(float *InOut, const float *APSectionFactors,
int lengthInOut, int NumberOfSections,
float *FilterState)
{
int n, j;
float temp;
for (j=0; j<NumberOfSections; j++){
for (n=0;n<lengthInOut;n++){
temp = FilterState[j] + APSectionFactors[j] * InOut[n];
FilterState[j] = -APSectionFactors[j] * temp + InOut[n];
InOut[n] = temp;
}
}
}
/* HPstcoeff_in = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefInFloat[4] =
{-1.94895953203325f, 0.94984516000000f, -0.05101826139794f, 0.05015484000000f};
/* Function WebRtcIsac_SplitAndFilter
* This function creates low-pass and high-pass decimated versions of part of
the input signal, and part of the signal in the input 'lookahead buffer'.
INPUTS:
in: a length FRAMESAMPLES array of input samples
prefiltdata: input data structure containing the filterbank states
and lookahead samples from the previous encoding
iteration.
OUTPUTS:
LP: a FRAMESAMPLES_HALF array of low-pass filtered samples that
have been phase equalized. The first QLOOKAHEAD samples are
based on the samples in the two prefiltdata->INLABUFx arrays
each of length QLOOKAHEAD.
The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
array in[].
HP: a FRAMESAMPLES_HALF array of high-pass filtered samples that
have been phase equalized. The first QLOOKAHEAD samples are
based on the samples in the two prefiltdata->INLABUFx arrays
each of length QLOOKAHEAD.
The remaining FRAMESAMPLES_HALF-QLOOKAHEAD samples are based
on the first FRAMESAMPLES_HALF-QLOOKAHEAD samples of the input
array in[].
LP_la: a FRAMESAMPLES_HALF array of low-pass filtered samples.
These samples are not phase equalized. They are computed
from the samples in the in[] array.
HP_la: a FRAMESAMPLES_HALF array of high-pass filtered samples
that are not phase equalized. They are computed from
the in[] vector.
prefiltdata: this input data structure's filterbank state and
lookahead sample buffers are updated for the next
encoding iteration.
*/
void WebRtcIsac_SplitAndFilterFloat(float *pin, float *LP, float *HP,
double *LP_la, double *HP_la,
PreFiltBankstr *prefiltdata)
{
int k,n;
float CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
float ForTransform_CompositeAPFilterState[NUMBEROFCOMPOSITEAPSECTIONS];
float ForTransform_CompositeAPFilterState2[NUMBEROFCOMPOSITEAPSECTIONS];
float tempinoutvec[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch1[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch2[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float in[FRAMESAMPLES];
float ftmp;
/* High pass filter */
for (k=0;k<FRAMESAMPLES;k++) {
in[k] = pin[k] + kHpStCoefInFloat[2] * prefiltdata->HPstates_float[0] +
kHpStCoefInFloat[3] * prefiltdata->HPstates_float[1];
ftmp = pin[k] - kHpStCoefInFloat[0] * prefiltdata->HPstates_float[0] -
kHpStCoefInFloat[1] * prefiltdata->HPstates_float[1];
prefiltdata->HPstates_float[1] = prefiltdata->HPstates_float[0];
prefiltdata->HPstates_float[0] = ftmp;
}
/*
% backwards all-pass filtering to obtain zero-phase
[tmp1(N2+LA:-1:LA+1, 1), state1] = filter(Q.coef, Q.coef(end:-1:1), in(N:-2:2));
tmp1(LA:-1:1) = filter(Q.coef, Q.coef(end:-1:1), Q.LookAheadBuf1, state1);
Q.LookAheadBuf1 = in(N:-2:N-2*LA+2);
*/
/*Backwards all-pass filter the odd samples of the input (upper channel)
to eventually obtain zero phase. The composite all-pass filter (comprised of both
the upper and lower channel all-pass filsters in series) is used for the
filtering. */
/* First Channel */
/*initial state of composite filter is zero */
for (k=0;k<NUMBEROFCOMPOSITEAPSECTIONS;k++){
CompositeAPFilterState[k] = 0.0;
}
/* put every other sample of input into a temporary vector in reverse (backward) order*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempinoutvec[k] = in[FRAMESAMPLES-1-2*k];
}
/* now all-pass filter the backwards vector. Output values overwrite the input vector. */
WebRtcIsac_AllPassFilter2Float(tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
/* save the backwards filtered output for later forward filtering,
but write it in forward order*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch1[FRAMESAMPLES_HALF+QLOOKAHEAD-1-k] = tempinoutvec[k];
}
/* save the backwards filter state becaue it will be transformed
later into a forward state */
for (k=0; k<NUMBEROFCOMPOSITEAPSECTIONS; k++) {
ForTransform_CompositeAPFilterState[k] = CompositeAPFilterState[k];
}
/* now backwards filter the samples in the lookahead buffer. The samples were
placed there in the encoding of the previous frame. The output samples
overwrite the input samples */
WebRtcIsac_AllPassFilter2Float(prefiltdata->INLABUF1_float,
WebRtcIsac_kCompositeApFactorsFloat, QLOOKAHEAD,
NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
/* save the output, but write it in forward order */
/* write the lookahead samples for the next encoding iteration. Every other
sample at the end of the input frame is written in reverse order for the
lookahead length. Exported in the prefiltdata structure. */
for (k=0;k<QLOOKAHEAD;k++) {
tempin_ch1[QLOOKAHEAD-1-k]=prefiltdata->INLABUF1_float[k];
prefiltdata->INLABUF1_float[k]=in[FRAMESAMPLES-1-2*k];
}
/* Second Channel. This is exactly like the first channel, except that the
even samples are now filtered instead (lower channel). */
for (k=0;k<NUMBEROFCOMPOSITEAPSECTIONS;k++){
CompositeAPFilterState[k] = 0.0;
}
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempinoutvec[k] = in[FRAMESAMPLES-2-2*k];
}
WebRtcIsac_AllPassFilter2Float(tempinoutvec, WebRtcIsac_kCompositeApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCOMPOSITEAPSECTIONS, CompositeAPFilterState);
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch2[FRAMESAMPLES_HALF+QLOOKAHEAD-1-k] = tempinoutvec[k];
}
for (k=0; k<NUMBEROFCOMPOSITEAPSECTIONS; k++) {
ForTransform_CompositeAPFilterState2[k] = CompositeAPFilterState[k];
}
WebRtcIsac_AllPassFilter2Float(prefiltdata->INLABUF2_float,
WebRtcIsac_kCompositeApFactorsFloat, QLOOKAHEAD,NUMBEROFCOMPOSITEAPSECTIONS,
CompositeAPFilterState);
for (k=0;k<QLOOKAHEAD;k++) {
tempin_ch2[QLOOKAHEAD-1-k]=prefiltdata->INLABUF2_float[k];
prefiltdata->INLABUF2_float[k]=in[FRAMESAMPLES-2-2*k];
}
/* Transform filter states from backward to forward */
/*At this point, each of the states of the backwards composite filters for the
two channels are transformed into forward filtering states for the corresponding
forward channel filters. Each channel's forward filtering state from the previous
encoding iteration is added to the transformed state to get a proper forward state */
/* So the existing NUMBEROFCOMPOSITEAPSECTIONS x 1 (4x1) state vector is multiplied by a
NUMBEROFCHANNELAPSECTIONSxNUMBEROFCOMPOSITEAPSECTIONS (2x4) transform matrix to get the
new state that is added to the previous 2x1 input state */
for (k=0;k<NUMBEROFCHANNELAPSECTIONS;k++){ /* k is row variable */
for (n=0; n<NUMBEROFCOMPOSITEAPSECTIONS;n++){/* n is column variable */
prefiltdata->INSTAT1_float[k] += ForTransform_CompositeAPFilterState[n]*
WebRtcIsac_kTransform1Float[k*NUMBEROFCHANNELAPSECTIONS+n];
prefiltdata->INSTAT2_float[k] += ForTransform_CompositeAPFilterState2[n]*
WebRtcIsac_kTransform2Float[k*NUMBEROFCHANNELAPSECTIONS+n];
}
}
/*obtain polyphase components by forward all-pass filtering through each channel */
/* the backward filtered samples are now forward filtered with the corresponding channel filters */
/* The all pass filtering automatically updates the filter states which are exported in the
prefiltdata structure */
WebRtcIsac_AllPassFilter2Float(tempin_ch1,WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTAT1_float);
WebRtcIsac_AllPassFilter2Float(tempin_ch2,WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTAT2_float);
/* Now Construct low-pass and high-pass signals as combinations of polyphase components */
for (k=0; k<FRAMESAMPLES_HALF; k++) {
LP[k] = 0.5f*(tempin_ch1[k] + tempin_ch2[k]);/* low pass signal*/
HP[k] = 0.5f*(tempin_ch1[k] - tempin_ch2[k]);/* high pass signal*/
}
/* Lookahead LP and HP signals */
/* now create low pass and high pass signals of the input vector. However, no
backwards filtering is performed, and hence no phase equalization is involved.
Also, the input contains some samples that are lookahead samples. The high pass
and low pass signals that are created are used outside this function for analysis
(not encoding) purposes */
/* set up input */
for (k=0; k<FRAMESAMPLES_HALF; k++) {
tempin_ch1[k]=in[2*k+1];
tempin_ch2[k]=in[2*k];
}
/* the input filter states are passed in and updated by the all-pass filtering routine and
exported in the prefiltdata structure*/
WebRtcIsac_AllPassFilter2Float(tempin_ch1,WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTATLA1_float);
WebRtcIsac_AllPassFilter2Float(tempin_ch2,WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS, prefiltdata->INSTATLA2_float);
for (k=0; k<FRAMESAMPLES_HALF; k++) {
LP_la[k] = (float)(0.5f*(tempin_ch1[k] + tempin_ch2[k])); /*low pass */
HP_la[k] = (double)(0.5f*(tempin_ch1[k] - tempin_ch2[k])); /* high pass */
}
}/*end of WebRtcIsac_SplitAndFilter */
/* Combining */
/* HPstcoeff_out_1 = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefOut1Float[4] =
{-1.99701049409000f, 0.99714204490000f, 0.01701049409000f, -0.01704204490000f};
/* HPstcoeff_out_2 = {a1, a2, b1 - b0 * a1, b2 - b0 * a2}; */
static const float kHpStCoefOut2Float[4] =
{-1.98645294509837f, 0.98672435560000f, 0.00645294509837f, -0.00662435560000f};
/* Function WebRtcIsac_FilterAndCombine */
/* This is a decoder function that takes the decimated
length FRAMESAMPLES_HALF input low-pass and
high-pass signals and creates a reconstructed fullband
output signal of length FRAMESAMPLES. WebRtcIsac_FilterAndCombine
is the sibling function of WebRtcIsac_SplitAndFilter */
/* INPUTS:
inLP: a length FRAMESAMPLES_HALF array of input low-pass
samples.
inHP: a length FRAMESAMPLES_HALF array of input high-pass
samples.
postfiltdata: input data structure containing the filterbank
states from the previous decoding iteration.
OUTPUTS:
Out: a length FRAMESAMPLES array of output reconstructed
samples (fullband) based on the input low-pass and
high-pass signals.
postfiltdata: the input data structure containing the filterbank
states is updated for the next decoding iteration */
void WebRtcIsac_FilterAndCombineFloat(float *InLP,
float *InHP,
float *Out,
PostFiltBankstr *postfiltdata)
{
int k;
float tempin_ch1[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float tempin_ch2[FRAMESAMPLES+MAX_AR_MODEL_ORDER];
float ftmp, ftmp2;
/* Form the polyphase signals*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
tempin_ch1[k]=InLP[k]+InHP[k]; /* Construct a new upper channel signal*/
tempin_ch2[k]=InLP[k]-InHP[k]; /* Construct a new lower channel signal*/
}
/* all-pass filter the new upper channel signal. HOWEVER, use the all-pass filter factors
that were used as a lower channel at the encoding side. So at the decoder, the
corresponding all-pass filter factors for each channel are swapped.*/
WebRtcIsac_AllPassFilter2Float(tempin_ch1, WebRtcIsac_kLowerApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,postfiltdata->STATE_0_UPPER_float);
/* Now, all-pass filter the new lower channel signal. But since all-pass filter factors
at the decoder are swapped from the ones at the encoder, the 'upper' channel
all-pass filter factors (WebRtcIsac_kUpperApFactorsFloat) are used to filter this new
lower channel signal */
WebRtcIsac_AllPassFilter2Float(tempin_ch2, WebRtcIsac_kUpperApFactorsFloat,
FRAMESAMPLES_HALF, NUMBEROFCHANNELAPSECTIONS,postfiltdata->STATE_0_LOWER_float);
/* Merge outputs to form the full length output signal.*/
for (k=0;k<FRAMESAMPLES_HALF;k++) {
Out[2*k]=tempin_ch2[k];
Out[2*k+1]=tempin_ch1[k];
}
/* High pass filter */
for (k=0;k<FRAMESAMPLES;k++) {
ftmp2 = Out[k] + kHpStCoefOut1Float[2] * postfiltdata->HPstates1_float[0] +
kHpStCoefOut1Float[3] * postfiltdata->HPstates1_float[1];
ftmp = Out[k] - kHpStCoefOut1Float[0] * postfiltdata->HPstates1_float[0] -
kHpStCoefOut1Float[1] * postfiltdata->HPstates1_float[1];
postfiltdata->HPstates1_float[1] = postfiltdata->HPstates1_float[0];
postfiltdata->HPstates1_float[0] = ftmp;
Out[k] = ftmp2;
}
for (k=0;k<FRAMESAMPLES;k++) {
ftmp2 = Out[k] + kHpStCoefOut2Float[2] * postfiltdata->HPstates2_float[0] +
kHpStCoefOut2Float[3] * postfiltdata->HPstates2_float[1];
ftmp = Out[k] - kHpStCoefOut2Float[0] * postfiltdata->HPstates2_float[0] -
kHpStCoefOut2Float[1] * postfiltdata->HPstates2_float[1];
postfiltdata->HPstates2_float[1] = postfiltdata->HPstates2_float[0];
postfiltdata->HPstates2_float[0] = ftmp;
Out[k] = ftmp2;
}
}

View File

@ -0,0 +1,171 @@
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/* encode.c - Encoding function for the iSAC coder */
#include "structs.h"
#include "codec.h"
#include "pitch_estimator.h"
#include <math.h>
void WebRtcIsac_InitMasking(MaskFiltstr *maskdata) {
int k;
for (k = 0; k < WINLEN; k++) {
maskdata->DataBufferLo[k] = 0.0;
maskdata->DataBufferHi[k] = 0.0;
}
for (k = 0; k < ORDERLO+1; k++) {
maskdata->CorrBufLo[k] = 0.0;
maskdata->PreStateLoF[k] = 0.0;
maskdata->PreStateLoG[k] = 0.0;
maskdata->PostStateLoF[k] = 0.0;
maskdata->PostStateLoG[k] = 0.0;
}
for (k = 0; k < ORDERHI+1; k++) {
maskdata->CorrBufHi[k] = 0.0;
maskdata->PreStateHiF[k] = 0.0;
maskdata->PreStateHiG[k] = 0.0;
maskdata->PostStateHiF[k] = 0.0;
maskdata->PostStateHiG[k] = 0.0;
}
maskdata->OldEnergy = 10.0;
return;
}
void WebRtcIsac_InitPreFilterbank(PreFiltBankstr *prefiltdata)
{
int k;
for (k = 0; k < QLOOKAHEAD; k++) {
prefiltdata->INLABUF1[k] = 0;
prefiltdata->INLABUF2[k] = 0;
prefiltdata->INLABUF1_float[k] = 0;
prefiltdata->INLABUF2_float[k] = 0;
}
for (k = 0; k < 2*(QORDER-1); k++) {
prefiltdata->INSTAT1[k] = 0;
prefiltdata->INSTAT2[k] = 0;
prefiltdata->INSTATLA1[k] = 0;
prefiltdata->INSTATLA2[k] = 0;
prefiltdata->INSTAT1_float[k] = 0;
prefiltdata->INSTAT2_float[k] = 0;
prefiltdata->INSTATLA1_float[k] = 0;
prefiltdata->INSTATLA2_float[k] = 0;
}
/* High pass filter states */
prefiltdata->HPstates[0] = 0.0;
prefiltdata->HPstates[1] = 0.0;
prefiltdata->HPstates_float[0] = 0.0f;
prefiltdata->HPstates_float[1] = 0.0f;
return;
}
void WebRtcIsac_InitPostFilterbank(PostFiltBankstr *postfiltdata)
{
int k;
for (k = 0; k < 2*POSTQORDER; k++) {
postfiltdata->STATE_0_LOWER[k] = 0;
postfiltdata->STATE_0_UPPER[k] = 0;
postfiltdata->STATE_0_LOWER_float[k] = 0;
postfiltdata->STATE_0_UPPER_float[k] = 0;
}
/* High pass filter states */
postfiltdata->HPstates1[0] = 0.0;
postfiltdata->HPstates1[1] = 0.0;
postfiltdata->HPstates2[0] = 0.0;
postfiltdata->HPstates2[1] = 0.0;
postfiltdata->HPstates1_float[0] = 0.0f;
postfiltdata->HPstates1_float[1] = 0.0f;
postfiltdata->HPstates2_float[0] = 0.0f;
postfiltdata->HPstates2_float[1] = 0.0f;
return;
}
void WebRtcIsac_InitPitchFilter(PitchFiltstr *pitchfiltdata)
{
int k;
for (k = 0; k < PITCH_BUFFSIZE; k++) {
pitchfiltdata->ubuf[k] = 0.0;
}
pitchfiltdata->ystate[0] = 0.0;
for (k = 1; k < (PITCH_DAMPORDER); k++) {
pitchfiltdata->ystate[k] = 0.0;
}
pitchfiltdata->oldlagp[0] = 50.0;
pitchfiltdata->oldgainp[0] = 0.0;
}
void WebRtcIsac_InitWeightingFilter(WeightFiltstr *wfdata)
{
int k;
double t, dtmp, dtmp2, denum, denum2;
for (k=0;k<PITCH_WLPCBUFLEN;k++)
wfdata->buffer[k]=0.0;
for (k=0;k<PITCH_WLPCORDER;k++) {
wfdata->istate[k]=0.0;
wfdata->weostate[k]=0.0;
wfdata->whostate[k]=0.0;
}
/* next part should be in Matlab, writing to a global table */
t = 0.5;
denum = 1.0 / ((double) PITCH_WLPCWINLEN);
denum2 = denum * denum;
for (k=0;k<PITCH_WLPCWINLEN;k++) {
dtmp = PITCH_WLPCASYM * t * denum + (1-PITCH_WLPCASYM) * t * t * denum2;
dtmp *= 3.14159265;
dtmp2 = sin(dtmp);
wfdata->window[k] = dtmp2 * dtmp2;
t++;
}
}
/* clear all buffers */
void WebRtcIsac_InitPitchAnalysis(PitchAnalysisStruct *State)
{
int k;
for (k = 0; k < PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2; k++)
State->dec_buffer[k] = 0.0;
for (k = 0; k < 2*ALLPASSSECTIONS+1; k++)
State->decimator_state[k] = 0.0;
for (k = 0; k < 2; k++)
State->hp_state[k] = 0.0;
for (k = 0; k < QLOOKAHEAD; k++)
State->whitened_buf[k] = 0.0;
for (k = 0; k < QLOOKAHEAD; k++)
State->inbuf[k] = 0.0;
WebRtcIsac_InitPitchFilter(&(State->PFstr_wght));
WebRtcIsac_InitPitchFilter(&(State->PFstr));
WebRtcIsac_InitWeightingFilter(&(State->Wghtstr));
}

View File

@ -0,0 +1,383 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pitch_estimator.h"
#include <math.h>
#include <memory.h>
#include <stdlib.h>
#include "os_specific_inline.h"
/*
* We are implementing the following filters;
*
* Pre-filtering:
* y(z) = x(z) + damper(z) * gain * (x(z) + y(z)) * z ^ (-lag);
*
* Post-filtering:
* y(z) = x(z) - damper(z) * gain * (x(z) + y(z)) * z ^ (-lag);
*
* Note that |lag| is a floating number so we perform an interpolation to
* obtain the correct |lag|.
*
*/
static const double kDampFilter[PITCH_DAMPORDER] = {-0.07, 0.25, 0.64, 0.25,
-0.07};
/* interpolation coefficients; generated by design_pitch_filter.m */
static const double kIntrpCoef[PITCH_FRACS][PITCH_FRACORDER] = {
{-0.02239172458614, 0.06653315052934, -0.16515880017569, 0.60701333734125,
0.64671399919202, -0.20249000396417, 0.09926548334755, -0.04765933793109,
0.01754159521746},
{-0.01985640750434, 0.05816126837866, -0.13991265473714, 0.44560418147643,
0.79117042386876, -0.20266133815188, 0.09585268418555, -0.04533310458084,
0.01654127246314},
{-0.01463300534216, 0.04229888475060, -0.09897034715253, 0.28284326017787,
0.90385267956632, -0.16976950138649, 0.07704272393639, -0.03584218578311,
0.01295781500709},
{-0.00764851320885, 0.02184035544377, -0.04985561057281, 0.13083306574393,
0.97545011664662, -0.10177807997561, 0.04400901776474, -0.02010737175166,
0.00719783432422},
{-0.00000000000000, 0.00000000000000, -0.00000000000001, 0.00000000000001,
0.99999999999999, 0.00000000000001, -0.00000000000001, 0.00000000000000,
-0.00000000000000},
{0.00719783432422, -0.02010737175166, 0.04400901776474, -0.10177807997562,
0.97545011664663, 0.13083306574393, -0.04985561057280, 0.02184035544377,
-0.00764851320885},
{0.01295781500710, -0.03584218578312, 0.07704272393640, -0.16976950138650,
0.90385267956634, 0.28284326017785, -0.09897034715252, 0.04229888475059,
-0.01463300534216},
{0.01654127246315, -0.04533310458085, 0.09585268418557, -0.20266133815190,
0.79117042386878, 0.44560418147640, -0.13991265473712, 0.05816126837865,
-0.01985640750433}
};
/*
* Enumerating the operation of the filter.
* iSAC has 4 different pitch-filter which are very similar in their structure.
*
* kPitchFilterPre : In this mode the filter is operating as pitch
* pre-filter. This is used at the encoder.
* kPitchFilterPost : In this mode the filter is operating as pitch
* post-filter. This is the inverse of pre-filter and used
* in the decoder.
* kPitchFilterPreLa : This is, in structure, similar to pre-filtering but
* utilizing 3 millisecond lookahead. It is used to
* obtain the signal for LPC analysis.
* kPitchFilterPreGain : This is, in structure, similar to pre-filtering but
* differential changes in gain is considered. This is
* used to find the optimal gain.
*/
typedef enum {
kPitchFilterPre, kPitchFilterPost, kPitchFilterPreLa, kPitchFilterPreGain
} PitchFilterOperation;
/*
* Structure with parameters used for pitch-filtering.
* buffer : a buffer where the sum of previous inputs and outputs
* are stored.
* damper_state : the state of the damping filter. The filter is defined by
* |kDampFilter|.
* interpol_coeff : pointer to a set of coefficient which are used to utilize
* fractional pitch by interpolation.
* gain : pitch-gain to be applied to the current segment of input.
* lag : pitch-lag for the current segment of input.
* lag_offset : the offset of lag w.r.t. current sample.
* sub_frame : sub-frame index, there are 4 pitch sub-frames in an iSAC
* frame.
* This specifies the usage of the filter. See
* 'PitchFilterOperation' for operational modes.
* num_samples : number of samples to be processed in each segment.
* index : index of the input and output sample.
* damper_state_dg : state of damping filter for different trial gains.
* gain_mult : differential changes to gain.
*/
typedef struct {
double buffer[PITCH_INTBUFFSIZE + QLOOKAHEAD];
double damper_state[PITCH_DAMPORDER];
const double *interpol_coeff;
double gain;
double lag;
int lag_offset;
int sub_frame;
PitchFilterOperation mode;
int num_samples;
int index;
double damper_state_dg[4][PITCH_DAMPORDER];
double gain_mult[4];
} PitchFilterParam;
/**********************************************************************
* FilterSegment()
* Filter one segment, a quarter of a frame.
*
* Inputs
* in_data : pointer to the input signal of 30 ms at 8 kHz sample-rate.
* filter_param : pitch filter parameters.
*
* Outputs
* out_data : pointer to a buffer where the filtered signal is written to.
* out_dg : [only used in kPitchFilterPreGain] pointer to a buffer
* where the output of different gain values (differential
* change to gain) is written.
*/
static void FilterSegment(const double* in_data, PitchFilterParam* parameters,
double* out_data,
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
int n;
int m;
int j;
double sum;
double sum2;
/* Index of |parameters->buffer| where the output is written to. */
int pos = parameters->index + PITCH_BUFFSIZE;
/* Index of |parameters->buffer| where samples are read for fractional-lag
* computation. */
int pos_lag = pos - parameters->lag_offset;
for (n = 0; n < parameters->num_samples; ++n) {
/* Shift low pass filter states. */
for (m = PITCH_DAMPORDER - 1; m > 0; --m) {
parameters->damper_state[m] = parameters->damper_state[m - 1];
}
/* Filter to get fractional pitch. */
sum = 0.0;
for (m = 0; m < PITCH_FRACORDER; ++m) {
sum += parameters->buffer[pos_lag + m] * parameters->interpol_coeff[m];
}
/* Multiply with gain. */
parameters->damper_state[0] = parameters->gain * sum;
if (parameters->mode == kPitchFilterPreGain) {
int lag_index = parameters->index - parameters->lag_offset;
int m_tmp = (lag_index < 0) ? -lag_index : 0;
/* Update the damper state for the new sample. */
for (m = PITCH_DAMPORDER - 1; m > 0; --m) {
for (j = 0; j < 4; ++j) {
parameters->damper_state_dg[j][m] =
parameters->damper_state_dg[j][m - 1];
}
}
for (j = 0; j < parameters->sub_frame + 1; ++j) {
/* Filter for fractional pitch. */
sum2 = 0.0;
for (m = PITCH_FRACORDER-1; m >= m_tmp; --m) {
/* |lag_index + m| is always larger than or equal to zero, see how
* m_tmp is computed. This is equivalent to assume samples outside
* |out_dg[j]| are zero. */
sum2 += out_dg[j][lag_index + m] * parameters->interpol_coeff[m];
}
/* Add the contribution of differential gain change. */
parameters->damper_state_dg[j][0] = parameters->gain_mult[j] * sum +
parameters->gain * sum2;
}
/* Filter with damping filter, and store the results. */
for (j = 0; j < parameters->sub_frame + 1; ++j) {
sum = 0.0;
for (m = 0; m < PITCH_DAMPORDER; ++m) {
sum -= parameters->damper_state_dg[j][m] * kDampFilter[m];
}
out_dg[j][parameters->index] = sum;
}
}
/* Filter with damping filter. */
sum = 0.0;
for (m = 0; m < PITCH_DAMPORDER; ++m) {
sum += parameters->damper_state[m] * kDampFilter[m];
}
/* Subtract from input and update buffer. */
out_data[parameters->index] = in_data[parameters->index] - sum;
parameters->buffer[pos] = in_data[parameters->index] +
out_data[parameters->index];
++parameters->index;
++pos;
++pos_lag;
}
return;
}
/* Update filter parameters based on the pitch-gains and pitch-lags. */
static void Update(PitchFilterParam* parameters) {
double fraction;
int fraction_index;
/* Compute integer lag-offset. */
parameters->lag_offset = WebRtcIsac_lrint(parameters->lag + PITCH_FILTDELAY +
0.5);
/* Find correct set of coefficients for computing fractional pitch. */
fraction = parameters->lag_offset - (parameters->lag + PITCH_FILTDELAY);
fraction_index = WebRtcIsac_lrint(PITCH_FRACS * fraction - 0.5);
parameters->interpol_coeff = kIntrpCoef[fraction_index];
if (parameters->mode == kPitchFilterPreGain) {
/* If in this mode make a differential change to pitch gain. */
parameters->gain_mult[parameters->sub_frame] += 0.2;
if (parameters->gain_mult[parameters->sub_frame] > 1.0) {
parameters->gain_mult[parameters->sub_frame] = 1.0;
}
if (parameters->sub_frame > 0) {
parameters->gain_mult[parameters->sub_frame - 1] -= 0.2;
}
}
}
/******************************************************************************
* FilterFrame()
* Filter a frame of 30 millisecond, given pitch-lags and pitch-gains.
*
* Inputs
* in_data : pointer to the input signal of 30 ms at 8 kHz sample-rate.
* lags : pointer to pitch-lags, 4 lags per frame.
* gains : pointer to pitch-gians, 4 gains per frame.
* mode : defining the functionality of the filter. It takes the
* following values.
* kPitchFilterPre: Pitch pre-filter, used at encoder.
* kPitchFilterPost: Pitch post-filter, used at decoder.
* kPitchFilterPreLa: Pitch pre-filter with lookahead.
* kPitchFilterPreGain: Pitch pre-filter used to otain optimal
* pitch-gains.
*
* Outputs
* out_data : pointer to a buffer where the filtered signal is written to.
* out_dg : [only used in kPitchFilterPreGain] pointer to a buffer
* where the output of different gain values (differential
* change to gain) is written.
*/
static void FilterFrame(const double* in_data, PitchFiltstr* filter_state,
double* lags, double* gains, PitchFilterOperation mode,
double* out_data,
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD]) {
PitchFilterParam filter_parameters;
double gain_delta, lag_delta;
double old_lag, old_gain;
int n;
int m;
const double kEnhancer = 1.3;
/* Set up buffer and states. */
filter_parameters.index = 0;
filter_parameters.lag_offset = 0;
filter_parameters.mode = mode;
/* Copy states to local variables. */
memcpy(filter_parameters.buffer, filter_state->ubuf,
sizeof(filter_state->ubuf));
memcpy(filter_parameters.damper_state, filter_state->ystate,
sizeof(filter_state->ystate));
if (mode == kPitchFilterPreGain) {
/* Clear buffers. */
memset(filter_parameters.gain_mult, 0, sizeof(filter_parameters.gain_mult));
memset(filter_parameters.damper_state_dg, 0,
sizeof(filter_parameters.damper_state_dg));
for (n = 0; n < PITCH_SUBFRAMES; ++n) {
//memset(out_dg[n], 0, sizeof(double) * (PITCH_FRAME_LEN + QLOOKAHEAD));
memset(out_dg[n], 0, sizeof(out_dg[n]));
}
} else if (mode == kPitchFilterPost) {
/* Make output more periodic. Negative sign is to change the structure
* of the filter. */
for (n = 0; n < PITCH_SUBFRAMES; ++n) {
gains[n] *= -kEnhancer;
}
}
old_lag = *filter_state->oldlagp;
old_gain = *filter_state->oldgainp;
/* No interpolation if pitch lag step is big. */
if ((lags[0] > (PITCH_UPSTEP * old_lag)) ||
(lags[0] < (PITCH_DOWNSTEP * old_lag))) {
old_lag = lags[0];
old_gain = gains[0];
if (mode == kPitchFilterPreGain) {
filter_parameters.gain_mult[0] = 1.0;
}
}
filter_parameters.num_samples = PITCH_UPDATE;
for (m = 0; m < PITCH_SUBFRAMES; ++m) {
/* Set the sub-frame value. */
filter_parameters.sub_frame = m;
/* Calculate interpolation steps for pitch-lag and pitch-gain. */
lag_delta = (lags[m] - old_lag) / PITCH_GRAN_PER_SUBFRAME;
filter_parameters.lag = old_lag;
gain_delta = (gains[m] - old_gain) / PITCH_GRAN_PER_SUBFRAME;
filter_parameters.gain = old_gain;
/* Store for the next sub-frame. */
old_lag = lags[m];
old_gain = gains[m];
for (n = 0; n < PITCH_GRAN_PER_SUBFRAME; ++n) {
/* Step-wise interpolation of pitch gains and lags. As pitch-lag changes,
* some parameters of filter need to be update. */
filter_parameters.gain += gain_delta;
filter_parameters.lag += lag_delta;
/* Update parameters according to new lag value. */
Update(&filter_parameters);
/* Filter a segment of input. */
FilterSegment(in_data, &filter_parameters, out_data, out_dg);
}
}
if (mode != kPitchFilterPreGain) {
/* Export buffer and states. */
memcpy(filter_state->ubuf, &filter_parameters.buffer[PITCH_FRAME_LEN],
sizeof(filter_state->ubuf));
memcpy(filter_state->ystate, filter_parameters.damper_state,
sizeof(filter_state->ystate));
/* Store for the next frame. */
*filter_state->oldlagp = old_lag;
*filter_state->oldgainp = old_gain;
}
if ((mode == kPitchFilterPreGain) || (mode == kPitchFilterPreLa)) {
/* Filter the lookahead segment, this is treated as the last sub-frame. So
* set |pf_param| to last sub-frame. */
filter_parameters.sub_frame = PITCH_SUBFRAMES - 1;
filter_parameters.num_samples = QLOOKAHEAD;
FilterSegment(in_data, &filter_parameters, out_data, out_dg);
}
}
void WebRtcIsac_PitchfilterPre(double* in_data, double* out_data,
PitchFiltstr* pf_state, double* lags,
double* gains) {
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPre, out_data, NULL);
}
void WebRtcIsac_PitchfilterPre_la(double* in_data, double* out_data,
PitchFiltstr* pf_state, double* lags,
double* gains) {
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreLa, out_data,
NULL);
}
void WebRtcIsac_PitchfilterPre_gains(
double* in_data, double* out_data,
double out_dg[][PITCH_FRAME_LEN + QLOOKAHEAD], PitchFiltstr *pf_state,
double* lags, double* gains) {
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPreGain, out_data,
out_dg);
}
void WebRtcIsac_PitchfilterPost(double* in_data, double* out_data,
PitchFiltstr* pf_state, double* lags,
double* gains) {
FilterFrame(in_data, pf_state, lags, gains, kPitchFilterPost, out_data, NULL);
}

View File

@ -50,6 +50,10 @@ libwebrtc_audio_processing_la_SOURCES = include/audio_processing.h \
beamformer/nonlinear_beamformer.h \
beamformer/covariance_matrix_generator.cc \
beamformer/nonlinear_beamformer.cc \
intelligibility/intelligibility_enhancer.h \
intelligibility/intelligibility_utils.h \
intelligibility/intelligibility_enhancer.cc \
intelligibility/intelligibility_utils.cc \
logging/aec_logging.h \
logging/aec_logging_file_handling.h \
logging/aec_logging_file_handling.cc \
@ -125,7 +129,8 @@ libwebrtc_audio_processing_la_SOURCES = include/audio_processing.h \
voice_detection_impl.h
if NS_FIXED
COMMON_CXXFLAGS += -DWEBRTC_NS_FIXED=0
COMMON_CFLAGS += -DWEBRTC_NS_FIXED=1
COMMON_CXXFLAGS += -DWEBRTC_NS_FIXED=1
libwebrtc_audio_processing_la_SOURCES += \
ns/include/noise_suppression_x.h \
ns/noise_suppression_x.c \
@ -134,7 +139,8 @@ libwebrtc_audio_processing_la_SOURCES += \
ns/nsx_core.h \
ns/nsx_core_c.c
else
COMMON_CXXFLAGS += -DWEBRTC_NS_FIXED=1
COMMON_CFLAGS += -DWEBRTC_NS_FLOAT=1
COMMON_CXXFLAGS += -DWEBRTC_NS_FLOAT=1
libwebrtc_audio_processing_la_SOURCES += \
ns/include/noise_suppression.h \
ns/noise_suppression.c \
@ -147,9 +153,10 @@ endif
libwebrtc_audio_processing_la_CFLAGS = $(AM_CFLAGS) $(COMMON_CFLAGS)
libwebrtc_audio_processing_la_CXXFLAGS = $(AM_CXXFLAGS) $(COMMON_CXXFLAGS)
libwebrtc_audio_processing_la_LIBADD = $(top_builddir)/webrtc/base/libbase.la \
libwebrtc_audio_processing_la_LIBADD = $(top_builddir)/webrtc/libwebrtc.la \
$(top_builddir)/webrtc/base/libbase.la \
$(top_builddir)/webrtc/system_wrappers/libsystem_wrappers.la \
$(top_builddir)/webrtc/common_audio/libcommon_audio.la
$(top_builddir)/webrtc/common_audio/libcommon_audio.la \
$(top_builddir)/webrtc/modules/audio_coding/libaudio_coding.la
libwebrtc_audio_processing_la_LDFLAGS = $(AM_LDFLAGS) -version-info $(LIBWEBRTC_AUDIO_PROCESSING_VERSION_INFO)

View File

@ -1,130 +0,0 @@
# Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
#
# Use of this source code is governed by a BSD-style license
# that can be found in the LICENSE file in the root of the source
# tree. An additional intellectual property rights grant can be found
# in the file PATENTS. All contributing project authors may
# be found in the AUTHORS file in the root of the source tree.
{
'variables': {
'protoc_out_dir': '<(SHARED_INTERMEDIATE_DIR)/protoc_out',
'protoc_out_relpath': 'webrtc/audio_processing',
},
'targets': [
{
'target_name': 'audio_processing',
'type': '<(library)',
'conditions': [
['prefer_fixed_point==1', {
'dependencies': ['ns_fix'],
'defines': ['WEBRTC_NS_FIXED'],
}, {
'dependencies': ['ns'],
'defines': ['WEBRTC_NS_FLOAT'],
}],
['build_with_chromium==1', {
'dependencies': [
'<(webrtc_root)/../protobuf/protobuf.gyp:protobuf_lite',
],
}, {
'dependencies': [
'<(webrtc_root)/../third_party/protobuf/protobuf.gyp:protobuf_lite',
],
}],
],
'dependencies': [
'debug_proto',
'aec',
'aecm',
'agc',
'<(webrtc_root)/common_audio/common_audio.gyp:spl',
'<(webrtc_root)/common_audio/common_audio.gyp:vad',
'<(webrtc_root)/system_wrappers/source/system_wrappers.gyp:system_wrappers',
],
'include_dirs': [
'interface',
'../interface',
'<(protoc_out_dir)',
],
'direct_dependent_settings': {
'include_dirs': [
'interface',
'../interface',
],
},
'sources': [
'interface/audio_processing.h',
'audio_buffer.cc',
'audio_buffer.h',
'audio_processing_impl.cc',
'audio_processing_impl.h',
'echo_cancellation_impl.cc',
'echo_cancellation_impl.h',
'echo_control_mobile_impl.cc',
'echo_control_mobile_impl.h',
'gain_control_impl.cc',
'gain_control_impl.h',
'high_pass_filter_impl.cc',
'high_pass_filter_impl.h',
'level_estimator_impl.cc',
'level_estimator_impl.h',
'noise_suppression_impl.cc',
'noise_suppression_impl.h',
'splitting_filter.cc',
'splitting_filter.h',
'processing_component.cc',
'processing_component.h',
'voice_detection_impl.cc',
'voice_detection_impl.h',
'<(protoc_out_dir)/<(protoc_out_relpath)/debug.pb.cc',
'<(protoc_out_dir)/<(protoc_out_relpath)/debug.pb.h',
],
},
{
# Protobuf compiler / generate rule for audio_processing
'target_name': 'debug_proto',
'type': 'none',
'variables': {
'proto_relpath': '<(webrtc_root)/modules/audio_processing',
},
'sources': [
'<(proto_relpath)/debug.proto',
],
'rules': [
{
'rule_name': 'genproto',
'extension': 'proto',
'inputs': [
'<(PRODUCT_DIR)/<(EXECUTABLE_PREFIX)protoc<(EXECUTABLE_SUFFIX)',
],
'outputs': [
'<(protoc_out_dir)/<(protoc_out_relpath)/<(RULE_INPUT_ROOT).pb.cc',
'<(protoc_out_dir)/<(protoc_out_relpath)/<(RULE_INPUT_ROOT).pb.h',
],
'action': [
'<(PRODUCT_DIR)/<(EXECUTABLE_PREFIX)protoc<(EXECUTABLE_SUFFIX)',
'--proto_path=<(proto_relpath)',
'<(proto_relpath)/<(RULE_INPUT_NAME)',
'--cpp_out=<(protoc_out_dir)/<(protoc_out_relpath)',
],
'message': 'Generating C++ code from <(RULE_INPUT_PATH)',
},
],
'conditions': [
['build_with_chromium==1', {
'dependencies': [
'<(webrtc_root)/../protobuf/protobuf.gyp:protoc#host',
],
}, {
'dependencies': [
'<(webrtc_root)/../third_party/protobuf/protobuf.gyp:protoc#host',
],
}],
],
# This target exports a hard dependency because it generates header
# files.
'hard_dependency': 1,
},
],
}

View File

@ -25,13 +25,14 @@ libsystem_wrappers_la_SOURCES = interface/aligned_malloc.h \
source/critical_section_win.h \
source/logging.cc \
source/metrics_default.cc \
source/rw_lock.cc \
source/rw_lock_generic.h \
source/rw_lock_posix.h \
source/rw_lock_win.h \
source/sleep.cc \
source/thread.cc \
source/thread_posix.h \
source/thread_win.h
source/thread_win.h \
source/trace_impl.cc \
source/trace_impl.h \
source/trace_posix.h \

View File

@ -0,0 +1,37 @@
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/system_wrappers/interface/rw_lock_wrapper.h"
#include <assert.h>
#if defined(_WIN32)
#include "webrtc/system_wrappers/source/rw_lock_generic.h"
#include "webrtc/system_wrappers/source/rw_lock_win.h"
#else
#include "webrtc/system_wrappers/source/rw_lock_posix.h"
#endif
namespace webrtc {
RWLockWrapper* RWLockWrapper::CreateRWLock() {
#ifdef _WIN32
// Native implementation is faster, so use that if available.
RWLockWrapper* lock = RWLockWin::Create();
if (lock) {
return lock;
}
return new RWLockGeneric();
#else
return RWLockPosix::Create();
#endif
}
} // namespace webrtc