Initial work on progressive mesh generation. Currently based on Stan Melax's PolyChop.

This commit is contained in:
David Williams
2009-10-20 22:02:58 +00:00
parent 5eb538e925
commit c695a7bc86
16 changed files with 1006 additions and 26 deletions

View File

@ -6,15 +6,19 @@
using namespace PolyVox; using namespace PolyVox;
using namespace std; using namespace std;
void renderRegionImmediateMode(PolyVox::IndexedSurfacePatch& isp) void renderRegionImmediateMode(PolyVox::IndexedSurfacePatch& isp, unsigned int uLodLevel)
{ {
const vector<SurfaceVertex>& vecVertices = isp.getVertices(); const vector<SurfaceVertex>& vecVertices = isp.getVertices();
const vector<PolyVox::uint32_t>& vecIndices = isp.getIndices(); const vector<PolyVox::uint32_t>& vecIndices = isp.getIndices();
int beginIndex = isp.m_vecLodRecords[uLodLevel].beginIndex;
int endIndex = isp.m_vecLodRecords[uLodLevel].endIndex;
glBegin(GL_TRIANGLES); glBegin(GL_TRIANGLES);
for(vector<PolyVox::uint32_t>::const_iterator iterIndex = vecIndices.begin(); iterIndex != vecIndices.end(); ++iterIndex) //for(vector<PolyVox::uint32_t>::const_iterator iterIndex = vecIndices.begin(); iterIndex != vecIndices.end(); ++iterIndex)
for(int index = beginIndex; index < endIndex; ++index)
{ {
const SurfaceVertex& vertex = vecVertices[*iterIndex]; const SurfaceVertex& vertex = vecVertices[vecIndices[index]];
const Vector3DFloat& v3dVertexPos = vertex.getPosition(); const Vector3DFloat& v3dVertexPos = vertex.getPosition();
//const Vector3DFloat v3dRegionOffset(uRegionX * g_uRegionSideLength, uRegionY * g_uRegionSideLength, uRegionZ * g_uRegionSideLength); //const Vector3DFloat v3dRegionOffset(uRegionX * g_uRegionSideLength, uRegionY * g_uRegionSideLength, uRegionZ * g_uRegionSideLength);
const Vector3DFloat v3dFinalVertexPos = v3dVertexPos + static_cast<Vector3DFloat>(isp.m_Region.getLowerCorner()); const Vector3DFloat v3dFinalVertexPos = v3dVertexPos + static_cast<Vector3DFloat>(isp.m_Region.getLowerCorner());

View File

@ -5,6 +5,6 @@
#include "glew/glew.h" #include "glew/glew.h"
void renderRegionImmediateMode(PolyVox::IndexedSurfacePatch& isp); void renderRegionImmediateMode(PolyVox::IndexedSurfacePatch& isp, unsigned int uLodLevel);
#endif //__OpenGLExample_OpenGLImmediateModeSupport_H__ #endif //__OpenGLExample_OpenGLImmediateModeSupport_H__

View File

@ -11,6 +11,9 @@ OpenGLSurfacePatch BuildOpenGLSurfacePatch(const IndexedSurfacePatch& isp)
//Represents our filled in OpenGL vertex and index buffer objects. //Represents our filled in OpenGL vertex and index buffer objects.
OpenGLSurfacePatch result; OpenGLSurfacePatch result;
//The source
result.sourceISP = &isp;
//Convienient access to the vertices and indices //Convienient access to the vertices and indices
const vector<SurfaceVertex>& vecVertices = isp.getVertices(); const vector<SurfaceVertex>& vecVertices = isp.getVertices();
const vector<PolyVox::uint32_t>& vecIndices = isp.getIndices(); const vector<PolyVox::uint32_t>& vecIndices = isp.getIndices();
@ -74,8 +77,10 @@ OpenGLSurfacePatch BuildOpenGLSurfacePatch(const IndexedSurfacePatch& isp)
return result; return result;
} }
void renderRegionVertexBufferObject(const OpenGLSurfacePatch& openGLSurfacePatch) void renderRegionVertexBufferObject(const OpenGLSurfacePatch& openGLSurfacePatch, unsigned int uLodLevel)
{ {
int beginIndex = openGLSurfacePatch.sourceISP->m_vecLodRecords[uLodLevel].beginIndex;
int endIndex = openGLSurfacePatch.sourceISP->m_vecLodRecords[uLodLevel].endIndex;
glBindBuffer(GL_ARRAY_BUFFER, openGLSurfacePatch.vertexBuffer); glBindBuffer(GL_ARRAY_BUFFER, openGLSurfacePatch.vertexBuffer);
glVertexPointer(3, GL_FLOAT, 36, 0); glVertexPointer(3, GL_FLOAT, 36, 0);
glNormalPointer(GL_FLOAT, 36, (GLvoid*)12); glNormalPointer(GL_FLOAT, 36, (GLvoid*)12);
@ -87,7 +92,8 @@ void renderRegionVertexBufferObject(const OpenGLSurfacePatch& openGLSurfacePatch
glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_COLOR_ARRAY); glEnableClientState(GL_COLOR_ARRAY);
glDrawElements(GL_TRIANGLES, openGLSurfacePatch.noOfIndices, GL_UNSIGNED_INT, 0); //glDrawElements(GL_TRIANGLES, openGLSurfacePatch.noOfIndices, GL_UNSIGNED_INT, 0);
glDrawRangeElements(GL_TRIANGLES, beginIndex, endIndex-1, endIndex - beginIndex,/* openGLSurfacePatch.noOfIndices,*/ GL_UNSIGNED_INT, 0);
glDisableClientState(GL_COLOR_ARRAY); glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_NORMAL_ARRAY);

View File

@ -10,9 +10,10 @@ struct OpenGLSurfacePatch
GLulong noOfIndices; GLulong noOfIndices;
GLuint indexBuffer; GLuint indexBuffer;
GLuint vertexBuffer; GLuint vertexBuffer;
const PolyVox::IndexedSurfacePatch* sourceISP;
}; };
OpenGLSurfacePatch BuildOpenGLSurfacePatch(const PolyVox::IndexedSurfacePatch& isp); OpenGLSurfacePatch BuildOpenGLSurfacePatch(const PolyVox::IndexedSurfacePatch& isp);
void renderRegionVertexBufferObject(const OpenGLSurfacePatch& openGLSurfacePatch); void renderRegionVertexBufferObject(const OpenGLSurfacePatch& openGLSurfacePatch, unsigned int uLodLevel);
#endif //__OpenGLExample_OpenGLVertexBufferObjectSupport_H__ #endif //__OpenGLExample_OpenGLVertexBufferObjectSupport_H__

View File

@ -16,7 +16,7 @@ OpenGLWidget::OpenGLWidget(QWidget *parent)
{ {
m_xRotation = 0; m_xRotation = 0;
m_yRotation = 0; m_yRotation = 0;
m_uRegionSideLength = 32.0f; m_uRegionSideLength = 32;
timer = new QTimer(this); timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(update())); connect(timer, SIGNAL(timeout()), this, SLOT(update()));
@ -72,18 +72,23 @@ void OpenGLWidget::setVolume(PolyVox::Volume<PolyVox::uint8_t>* volData)
//isp->smooth(0.3f); //isp->smooth(0.3f);
//ispCurrent->generateAveragedFaceNormals(true); //ispCurrent->generateAveragedFaceNormals(true);
if(isp->m_vecTriangleIndices.size() > 0)
{
isp->makeProgressiveMesh();
Vector3DUint8 v3dRegPos(uRegionX,uRegionY,uRegionZ);
if(m_bUseOpenGLVertexBufferObjects) Vector3DUint8 v3dRegPos(uRegionX,uRegionY,uRegionZ);
{ if(m_bUseOpenGLVertexBufferObjects)
OpenGLSurfacePatch openGLSurfacePatch = BuildOpenGLSurfacePatch(*(isp.get())); {
m_mapOpenGLSurfacePatches.insert(make_pair(v3dRegPos, openGLSurfacePatch)); OpenGLSurfacePatch openGLSurfacePatch = BuildOpenGLSurfacePatch(*(isp.get()));
m_mapOpenGLSurfacePatches.insert(make_pair(v3dRegPos, openGLSurfacePatch));
}
//else
//{
m_mapIndexedSurfacePatches.insert(make_pair(v3dRegPos, isp));
//}
//delete ispCurrent;
} }
else
{
m_mapIndexedSurfacePatches.insert(make_pair(v3dRegPos, isp));
}
//delete ispCurrent;
} }
} }
} }
@ -161,15 +166,18 @@ void OpenGLWidget::paintGL()
for(PolyVox::uint16_t uRegionX = 0; uRegionX < m_uVolumeWidthInRegions; ++uRegionX) for(PolyVox::uint16_t uRegionX = 0; uRegionX < m_uVolumeWidthInRegions; ++uRegionX)
{ {
Vector3DUint8 v3dRegPos(uRegionX,uRegionY,uRegionZ); Vector3DUint8 v3dRegPos(uRegionX,uRegionY,uRegionZ);
if(m_bUseOpenGLVertexBufferObjects) if(m_mapIndexedSurfacePatches.find(v3dRegPos) != m_mapIndexedSurfacePatches.end())
{
renderRegionVertexBufferObject(m_mapOpenGLSurfacePatches[v3dRegPos]);
}
else
{ {
POLYVOX_SHARED_PTR<IndexedSurfacePatch> ispCurrent = m_mapIndexedSurfacePatches[v3dRegPos]; POLYVOX_SHARED_PTR<IndexedSurfacePatch> ispCurrent = m_mapIndexedSurfacePatches[v3dRegPos];
renderRegionImmediateMode(*ispCurrent); unsigned int uLodLevel = 0; //ispCurrent->m_vecLodRecords.size() - 1;
if(m_bUseOpenGLVertexBufferObjects)
{
renderRegionVertexBufferObject(m_mapOpenGLSurfacePatches[v3dRegPos], uLodLevel);
}
else
{
renderRegionImmediateMode(*ispCurrent, uLodLevel);
}
} }
} }
} }

View File

@ -89,6 +89,7 @@ int main(int argc, char *argv[])
//createCubeInVolume(volData, Vector3DUint16(1, 1, 1), Vector3DUint16(maxPos-1, maxPos-1, midPos/4), 255); //createCubeInVolume(volData, Vector3DUint16(1, 1, 1), Vector3DUint16(maxPos-1, maxPos-1, midPos/4), 255);
volData.calculateSizeInChars();
cout << "Tidying memory..."; cout << "Tidying memory...";
volData.tidyUpMemory(0); volData.tidyUpMemory(0);
cout << "done." << endl; cout << "done." << endl;

View File

@ -7,9 +7,11 @@ SET(CORE_SRC_FILES
source/GradientEstimators.cpp source/GradientEstimators.cpp
source/IndexedSurfacePatch.cpp source/IndexedSurfacePatch.cpp
source/Log.cpp source/Log.cpp
source/progmesh.cpp
source/Region.cpp source/Region.cpp
source/SurfaceExtractor.cpp source/SurfaceExtractor.cpp
source/SurfaceVertex.cpp source/SurfaceVertex.cpp
source/vector.cpp
source/VoxelFilters.cpp source/VoxelFilters.cpp
) )
@ -17,12 +19,15 @@ SET(CORE_SRC_FILES
SET(CORE_INC_FILES SET(CORE_INC_FILES
include/GradientEstimators.inl include/GradientEstimators.inl
include/IndexedSurfacePatch.h include/IndexedSurfacePatch.h
include/list.h
include/Log.h include/Log.h
include/PolyVoxForwardDeclarations.h include/PolyVoxForwardDeclarations.h
include/progmesh.h
include/Region.h include/Region.h
include/SurfaceExtractor.h include/SurfaceExtractor.h
include/SurfaceVertex.h include/SurfaceVertex.h
include/Vector.h include/Vector.h
include/vector_melax.h
include/Vector.inl include/Vector.inl
include/Volume.h include/Volume.h
include/Volume.inl include/Volume.inl
@ -80,6 +85,11 @@ IF(WIN32)
#Install the core header files, including the ones in the PolyVoxImpl subfolder. #Install the core header files, including the ones in the PolyVoxImpl subfolder.
INSTALL(DIRECTORY include DESTINATION PolyVoxCore COMPONENT development PATTERN "*.svn*" EXCLUDE) INSTALL(DIRECTORY include DESTINATION PolyVoxCore COMPONENT development PATTERN "*.svn*" EXCLUDE)
#On windows, we also install the debug information. It's unfortunate that we have to hard-code
#the 'Debug' part of the path, but CMake doesn't seem to provide a way around this. The best I
#found was: http://www.cmake.org/pipermail/cmake/2007-October/016924.html (and it is a bit ugly).
INSTALL(FILES ${CMAKE_CURRENT_BINARY_DIR}/Debug/PolyVoxCore_d.pdb DESTINATION PolyVoxCore/lib CONFIGURATIONS Debug)
ELSE(WIN32) ELSE(WIN32)
INSTALL(TARGETS PolyVoxCore INSTALL(TARGETS PolyVoxCore
RUNTIME DESTINATION bin RUNTIME DESTINATION bin
@ -91,4 +101,3 @@ ELSE(WIN32)
#Install the core header files, including the ones in the PolyVoxImpl subfolder. #Install the core header files, including the ones in the PolyVoxImpl subfolder.
INSTALL(DIRECTORY include/ DESTINATION include/PolyVoxCore COMPONENT development PATTERN "*.svn*" EXCLUDE) INSTALL(DIRECTORY include/ DESTINATION include/PolyVoxCore COMPONENT development PATTERN "*.svn*" EXCLUDE)
ENDIF(WIN32) ENDIF(WIN32)

View File

@ -34,6 +34,13 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
namespace PolyVox namespace PolyVox
{ {
class LodRecord
{
public:
int beginIndex;
int endIndex; //Let's put it just past the end STL style
};
class POLYVOXCORE_API IndexedSurfacePatch class POLYVOXCORE_API IndexedSurfacePatch
{ {
public: public:
@ -62,13 +69,22 @@ namespace PolyVox
//Vector3DInt32 m_v3dRegionPosition; //FIXME - remove this? //Vector3DInt32 m_v3dRegionPosition; //FIXME - remove this?
/*void growMaterialBoundary(void);
int countMaterialBoundary(void);*/
void makeProgressiveMesh(void);
Region m_Region; Region m_Region;
int32_t m_iTimeStamp; int32_t m_iTimeStamp;
int32_t m_iNoOfLod0Tris;
public: public:
std::vector<uint32_t> m_vecTriangleIndices; std::vector<uint32_t> m_vecTriangleIndices;
std::vector<SurfaceVertex> m_vecVertices; std::vector<SurfaceVertex> m_vecVertices;
std::vector<LodRecord> m_vecLodRecords;
}; };
} }

View File

@ -0,0 +1,128 @@
/*
* A generic template list class.
* Fairly typical of the list example you would
* find in any c++ book.
*/
#ifndef GENERIC_LIST_H
#define GENERIC_LIST_H
#include <assert.h>
#include <stdio.h>
template <class Type> class List {
public:
List(int s=0);
~List();
void allocate(int s);
void SetSize(int s);
void Pack();
void Add(Type);
void AddUnique(Type);
int Contains(Type);
void Remove(Type);
void DelIndex(int i);
Type * element;
int num;
int array_size;
Type &operator[](int i){assert(i>=0 && i<num); return element[i];}
};
template <class Type>
List<Type>::List(int s){
num=0;
array_size = 0;
element = NULL;
if(s) {
allocate(s);
}
}
template <class Type>
List<Type>::~List<Type>(){
delete element;
}
template <class Type>
void List<Type>::allocate(int s){
assert(s>0);
assert(s>=num);
Type *old = element;
array_size =s;
element = new Type[array_size];
assert(element);
for(int i=0;i<num;i++){
element[i]=old[i];
}
if(old) delete old;
}
template <class Type>
void List<Type>::SetSize(int s){
if(s==0) { if(element) delete element;}
else { allocate(s); }
num=s;
}
template <class Type>
void List<Type>::Pack(){
allocate(num);
}
template <class Type>
void List<Type>::Add(Type t){
assert(num<=array_size);
if(num==array_size) {
allocate((array_size)?array_size *2:16);
}
//int i;
//for(i=0;i<num;i++) {
// dissallow duplicates
// assert(element[i] != t);
//}
element[num++] = t;
}
template <class Type>
int List<Type>::Contains(Type t){
int i;
int count=0;
for(i=0;i<num;i++) {
if(element[i] == t) count++;
}
return count;
}
template <class Type>
void List<Type>::AddUnique(Type t){
if(!Contains(t)) Add(t);
}
template <class Type>
void List<Type>::DelIndex(int i){
assert(i<num);
num--;
while(i<num){
element[i] = element[i+1];
i++;
}
}
template <class Type>
void List<Type>::Remove(Type t){
int i;
for(i=0;i<num;i++) {
if(element[i] == t) {
break;
}
}
DelIndex(i);
for(i=0;i<num;i++) {
assert(element[i] != t);
}
}
#endif

View File

@ -0,0 +1,35 @@
/*
* Progressive Mesh type Polygon Reduction Algorithm
* by Stan Melax (c) 1998
*
* The function ProgressiveMesh() takes a model in an "indexed face
* set" sort of way. i.e. list of vertices and list of triangles.
* The function then does the polygon reduction algorithm
* internally and reduces the model all the way down to 0
* vertices and then returns the order in which the
* vertices are collapsed and to which neighbor each vertex
* is collapsed to. More specifically the returned "permutation"
* indicates how to reorder your vertices so you can render
* an object by using the first n vertices (for the n
* vertex version). After permuting your vertices, the
* map list indicates to which vertex each vertex is collapsed to.
*/
#ifndef PROGRESSIVE_MESH_H
#define PROGRESSIVE_MESH_H
#include "PolyVoxImpl/TypeDef.h"
#include "vector_melax.h"
#include "list.h"
class tridata {
public:
int v[3]; // indices to vertex list
// texture and vertex normal info removed for this demo
};
void POLYVOXCORE_API ProgressiveMesh(List<VectorM> &vert, List<tridata> &tri,
List<int> &map, List<int> &permutation );
#endif

View File

@ -0,0 +1,68 @@
//
// This module contains a bunch of well understood functions
// I apologise if the conventions used here are slightly
// different than what you are used to.
//
#ifndef GENERIC_VECTOR_H
#define GENERIC_VECTOR_H
#include <stdio.h>
#include <math.h>
class VectorM {
public:
float x,y,z;
VectorM(float _x=0.0,float _y=0.0,float _z=0.0){x=_x;y=_y;z=_z;};
operator float *() { return &x;};
float fBoundaryCost;
};
float magnitude(VectorM v);
VectorM normalize(VectorM v);
VectorM operator+(VectorM v1,VectorM v2);
VectorM operator-(VectorM v);
VectorM operator-(VectorM v1,VectorM v2);
VectorM operator*(VectorM v1,float s) ;
VectorM operator*(float s,VectorM v1) ;
VectorM operator/(VectorM v1,float s) ;
float operator^(VectorM v1,VectorM v2); // DOT product
VectorM operator*(VectorM v1,VectorM v2); // CROSS product
VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2);
class matrix{
public:
VectorM x,y,z;
matrix(){x=VectorM(1.0f,0.0f,0.0f);
y=VectorM(0.0f,1.0f,0.0f);
z=VectorM(0.0f,0.0f,1.0f);};
matrix(VectorM _x,VectorM _y,VectorM _z){x=_x;y=_y;z=_z;};
};
matrix transpose(matrix m);
VectorM operator*(matrix m,VectorM v);
matrix operator*(matrix m1,matrix m2);
class Quaternion{
public:
float r,x,y,z;
Quaternion(){x=y=z=0.0f;r=1.0f;};
Quaternion(VectorM v,float t){v=normalize(v);r=(float)cos(t/2.0);v=v*(float)sin(t/2.0);x=v.x;y=v.y;z=v.z;};
Quaternion(float _r,float _x,float _y,float _z){r=_r;x=_x;y=_y;z=_z;};
float angle(){return (float)(acos(r)*2.0);}
VectorM axis(){VectorM a(x,y,z); return a*(float)(1/sin(angle()/2.0));}
VectorM xdir(){return VectorM(1-2*(y*y+z*z), 2*(x*y+r*z), 2*(x*z-r*y));}
VectorM ydir(){return VectorM( 2*(x*y-r*z),1-2*(x*x+z*z), 2*(y*z+r*x));}
VectorM zdir(){return VectorM( 2*(x*z+r*y), 2*(y*z-r*x),1-2*(x*x+y*y));}
matrix getmatrix(){return matrix(xdir(),ydir(),zdir());}
//operator matrix(){return getmatrix();}
};
Quaternion operator-(Quaternion q);
Quaternion operator*(Quaternion a,Quaternion b);
VectorM operator*(Quaternion q,VectorM v);
VectorM operator*(VectorM v,Quaternion q);
Quaternion slerp(Quaternion a,Quaternion b,float interp);
#endif

View File

@ -21,6 +21,8 @@ Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#include "IndexedSurfacePatch.h" #include "IndexedSurfacePatch.h"
#include "progmesh.h"
using namespace std; using namespace std;
namespace PolyVox namespace PolyVox
@ -331,4 +333,273 @@ namespace PolyVox
return result; return result;
} }
/*int IndexedSurfacePatch::countMaterialBoundary(void)
{
int count = 0;
for(int ct = 0; ct < m_vecVertices.size(); ct++)
{
if(m_vecVertices[ct].m_bIsMaterialEdgeVertex)
{
count++;
}
}
return count;
}
void IndexedSurfacePatch::growMaterialBoundary(void)
{
std::vector<SurfaceVertex> vecNewVertices = m_vecVertices;
for(vector<uint32_t>::iterator iterIndex = m_vecTriangleIndices.begin(); iterIndex != m_vecTriangleIndices.end();)
{
SurfaceVertex& v0 = m_vecVertices[*iterIndex];
SurfaceVertex& v0New = vecNewVertices[*iterIndex];
iterIndex++;
SurfaceVertex& v1 = m_vecVertices[*iterIndex];
SurfaceVertex& v1New = vecNewVertices[*iterIndex];
iterIndex++;
SurfaceVertex& v2 = m_vecVertices[*iterIndex];
SurfaceVertex& v2New = vecNewVertices[*iterIndex];
iterIndex++;
if(v0.m_bIsMaterialEdgeVertex || v1.m_bIsMaterialEdgeVertex || v2.m_bIsMaterialEdgeVertex)
{
v0New.m_bIsMaterialEdgeVertex = true;
v1New.m_bIsMaterialEdgeVertex = true;
v2New.m_bIsMaterialEdgeVertex = true;
}
}
m_vecVertices = vecNewVertices;
}*/
void IndexedSurfacePatch::makeProgressiveMesh(void)
{
//Build the mesh using Stan Melax's code
List<VectorM> vecList;
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
{
VectorM vec;
vec.x = m_vecVertices[vertCt].getPosition().getX();
vec.y = m_vecVertices[vertCt].getPosition().getY();
vec.z = m_vecVertices[vertCt].getPosition().getZ();
if(m_vecVertices[vertCt].isEdgeVertex() || m_vecVertices[vertCt].m_bIsMaterialEdgeVertex)
{
vec.fBoundaryCost = 1.0f;
}
else
{
vec.fBoundaryCost = 0.0f;
}
vecList.Add(vec);
}
List<tridata> triList;
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); )
{
tridata tri;
tri.v[0] = m_vecTriangleIndices[triCt];
triCt++;
tri.v[1] = m_vecTriangleIndices[triCt];
triCt++;
tri.v[2] = m_vecTriangleIndices[triCt];
triCt++;
triList.Add(tri);
}
List<int> map;
List<int> permutation;
ProgressiveMesh(vecList, triList, map, permutation);
//Apply the permutation to our vertices
std::vector<SurfaceVertex> vecNewVertices(m_vecVertices.size());
for(int vertCt = 0; vertCt < m_vecVertices.size(); vertCt++)
{
vecNewVertices[permutation[vertCt]]= m_vecVertices[vertCt];
}
std::vector<uint32_t> vecNewTriangleIndices(m_vecTriangleIndices.size());
for(int triCt = 0; triCt < m_vecTriangleIndices.size(); triCt++)
{
vecNewTriangleIndices[triCt] = permutation[m_vecTriangleIndices[triCt]];
}
m_vecVertices = vecNewVertices;
m_vecTriangleIndices = vecNewTriangleIndices;
////////////////////////////////////////////////////////////////////////////////
//Check for unused vertices?
//int usedVertices = 0;
//int unusedVertices = 0;
/*usedVertices = 0;
unusedVertices = 0;
for(int vertCt = 0; vertCt < isp->m_vecVertices.size(); vertCt++)
{
bool found = false;
for(int triCt = 0; triCt < isp->m_vecTriangleIndices.size(); triCt++)
{
if(vertCt == isp->m_vecTriangleIndices[triCt])
{
found = true;
break;
}
}
if(found)
{
usedVertices++;
}
else
{
unusedVertices++;
}
}
std::cout << "Used = " << usedVertices << std::endl;
std::cout << "Unused = " << unusedVertices << std::endl;*/
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
//switch triangle order?
/*int noOfTriIndices = isp->m_vecTriangleIndices.size();
for(int triCt = 0; triCt < noOfTriIndices; triCt++)
{
vecNewTriangleIndices[(noOfTriIndices - 1) - triCt] = isp->m_vecTriangleIndices[triCt];
}
isp->m_vecTriangleIndices = vecNewTriangleIndices;*/
//Now build the new index buffers
std::vector<uint32_t> vecNewTriangles;
std::vector<uint32_t> vecUnaffectedTriangles;
std::vector<uint32_t> vecCollapsedTriangles;
vector<bool> vecCanCollapse(m_vecVertices.size());
for(int ct = 0; ct < vecCanCollapse.size(); ct++)
{
vecCanCollapse[ct] = true;
}
vector<bool> vecTriangleRemoved(m_vecTriangleIndices.size() / 3);
for(int ct = 0; ct < vecTriangleRemoved.size(); ct++)
{
vecTriangleRemoved[ct] = false;
}
int noOfCollapsed = 0;
m_vecLodRecords.clear();
for(int vertToCollapse = m_vecVertices.size() - 1; vertToCollapse > 0; vertToCollapse--)
//int vertToCollapse = isp->m_vecVertices.size() - 1;
{
int vertCollapseTarget = map[vertToCollapse];
if((vecCanCollapse[vertToCollapse]) && (vecCanCollapse[vertCollapseTarget]))
{
int noOfNew = 0;
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
{
int v0 = m_vecTriangleIndices[triCt];
triCt++;
int v1 = m_vecTriangleIndices[triCt];
triCt++;
int v2 = m_vecTriangleIndices[triCt];
triCt++;
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
{
if( (v0 == vertToCollapse) || (v1 == vertToCollapse) || (v2 == vertToCollapse) )
{
vecCollapsedTriangles.push_back(v0);
vecCollapsedTriangles.push_back(v1);
vecCollapsedTriangles.push_back(v2);
vecCanCollapse[v0] = false;
vecCanCollapse[v1] = false;
vecCanCollapse[v2] = false;
noOfCollapsed++;
int targetV0 = v0;
int targetV1 = v1;
int targetV2 = v2;
if(targetV0 == vertToCollapse) targetV0 = vertCollapseTarget;
if(targetV1 == vertToCollapse) targetV1 = vertCollapseTarget;
if(targetV2 == vertToCollapse) targetV2 = vertCollapseTarget;
if((targetV0 != targetV1) && (targetV1 != targetV2) && (targetV2 != targetV0))
{
vecNewTriangles.push_back(targetV0);
vecNewTriangles.push_back(targetV1);
vecNewTriangles.push_back(targetV2);
noOfNew++;
vecCanCollapse[targetV0] = false;
vecCanCollapse[targetV1] = false;
vecCanCollapse[targetV2] = false;
}
vecTriangleRemoved[(triCt - 3) / 3] = true;
}
}
}
LodRecord lodRecord;
lodRecord.beginIndex = vecNewTriangles.size() - (3 * noOfNew);
lodRecord.endIndex = vecCollapsedTriangles.size();
m_vecLodRecords.push_back(lodRecord);
}
}
//Copy triangles into unaffected list
for(int triCt = 0; triCt < m_vecTriangleIndices.size();)
{
int v0 = m_vecTriangleIndices[triCt];
triCt++;
int v1 = m_vecTriangleIndices[triCt];
triCt++;
int v2 = m_vecTriangleIndices[triCt];
triCt++;
if(vecTriangleRemoved[(triCt - 3) / 3] == false)
{
vecUnaffectedTriangles.push_back(v0);
vecUnaffectedTriangles.push_back(v1);
vecUnaffectedTriangles.push_back(v2);
}
}
//Now copy the three lists of triangles back
m_vecTriangleIndices.clear();
for(int ct = 0; ct < vecNewTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecNewTriangles[ct]);
}
for(int ct = 0; ct < vecUnaffectedTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecUnaffectedTriangles[ct]);
}
for(int ct = 0; ct < vecCollapsedTriangles.size(); ct++)
{
m_vecTriangleIndices.push_back(vecCollapsedTriangles[ct]);
}
//Adjust the lod records
for(int ct = 0; ct < m_vecLodRecords.size(); ct++)
{
m_vecLodRecords[ct].endIndex += (vecNewTriangles.size() + vecUnaffectedTriangles.size());
}
}
} }

View File

@ -90,6 +90,12 @@ namespace PolyVox
m_ispCurrent->m_Region = m_regInputUncropped; m_ispCurrent->m_Region = m_regInputUncropped;
m_ispCurrent->m_vecLodRecords.clear();
LodRecord lodRecord;
lodRecord.beginIndex = 0;
lodRecord.endIndex = m_ispCurrent->getNoOfIndices();
m_ispCurrent->m_vecLodRecords.push_back(lodRecord);
return POLYVOX_SHARED_PTR<IndexedSurfacePatch>(m_ispCurrent); return POLYVOX_SHARED_PTR<IndexedSurfacePatch>(m_ispCurrent);
} }

View File

@ -0,0 +1,314 @@
/*
* Progressive Mesh type Polygon Reduction Algorithm
* by Stan Melax (c) 1998
* Permission to use any of this code wherever you want is granted..
* Although, please do acknowledge authorship if appropriate.
*
* See the header file progmesh.h for a description of this module
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <assert.h>
#include <windows.h>
#include <iostream>
#include "vector_melax.h"
#include "list.h"
#include "progmesh.h"
/*
* For the polygon reduction algorithm we use data structures
* that contain a little bit more information than the usual
* indexed face set type of data structure.
* From a vertex we wish to be able to quickly get the
* neighboring faces and vertices.
*/
class Triangle;
class Vertex;
class Triangle {
public:
Vertex * vertex[3]; // the 3 points that make this tri
VectorM normal; // unit vector othogonal to this face
Triangle(Vertex *v0,Vertex *v1,Vertex *v2);
~Triangle();
void ComputeNormal();
void ReplaceVertex(Vertex *vold,Vertex *vnew);
int HasVertex(Vertex *v);
};
class Vertex {
public:
VectorM position; // location of point in euclidean space
int id; // place of vertex in original list
List<Vertex *> neighbor; // adjacent vertices
List<Triangle *> face; // adjacent triangles
float objdist; // cached cost of collapsing edge
Vertex * collapse; // candidate vertex for collapse
Vertex(VectorM v,int _id);
~Vertex();
void RemoveIfNonNeighbor(Vertex *n);
};
List<Vertex *> vertices;
List<Triangle *> triangles;
Triangle::Triangle(Vertex *v0,Vertex *v1,Vertex *v2){
assert(v0!=v1 && v1!=v2 && v2!=v0);
vertex[0]=v0;
vertex[1]=v1;
vertex[2]=v2;
ComputeNormal();
triangles.Add(this);
for(int i=0;i<3;i++) {
vertex[i]->face.Add(this);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
}
Triangle::~Triangle(){
int i;
triangles.Remove(this);
for(i=0;i<3;i++) {
if(vertex[i]) vertex[i]->face.Remove(this);
}
for(i=0;i<3;i++) {
int i2 = (i+1)%3;
if(!vertex[i] || !vertex[i2]) continue;
vertex[i ]->RemoveIfNonNeighbor(vertex[i2]);
vertex[i2]->RemoveIfNonNeighbor(vertex[i ]);
}
}
int Triangle::HasVertex(Vertex *v) {
return (v==vertex[0] ||v==vertex[1] || v==vertex[2]);
}
void Triangle::ComputeNormal(){
VectorM v0=vertex[0]->position;
VectorM v1=vertex[1]->position;
VectorM v2=vertex[2]->position;
normal = (v1-v0)*(v2-v1);
if(magnitude(normal)==0)return;
normal = normalize(normal);
}
void Triangle::ReplaceVertex(Vertex *vold,Vertex *vnew) {
assert(vold && vnew);
assert(vold==vertex[0] || vold==vertex[1] || vold==vertex[2]);
assert(vnew!=vertex[0] && vnew!=vertex[1] && vnew!=vertex[2]);
if(vold==vertex[0]){
vertex[0]=vnew;
}
else if(vold==vertex[1]){
vertex[1]=vnew;
}
else {
assert(vold==vertex[2]);
vertex[2]=vnew;
}
int i;
vold->face.Remove(this);
assert(!vnew->face.Contains(this));
vnew->face.Add(this);
for(i=0;i<3;i++) {
vold->RemoveIfNonNeighbor(vertex[i]);
vertex[i]->RemoveIfNonNeighbor(vold);
}
for(i=0;i<3;i++) {
assert(vertex[i]->face.Contains(this)==1);
for(int j=0;j<3;j++) if(i!=j) {
vertex[i]->neighbor.AddUnique(vertex[j]);
}
}
ComputeNormal();
}
Vertex::Vertex(VectorM v,int _id) {
position =v;
id=_id;
vertices.Add(this);
}
Vertex::~Vertex(){
assert(face.num==0);
while(neighbor.num) {
neighbor[0]->neighbor.Remove(this);
neighbor.Remove(neighbor[0]);
}
vertices.Remove(this);
}
void Vertex::RemoveIfNonNeighbor(Vertex *n) {
// removes n from neighbor list if n isn't a neighbor.
if(!neighbor.Contains(n)) return;
for(int i=0;i<face.num;i++) {
if(face[i]->HasVertex(n)) return;
}
neighbor.Remove(n);
}
float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {
// if we collapse edge uv by moving u to v then how
// much different will the model change, i.e. how much "error".
// Texture, vertex normal, and border vertex code was removed
// to keep this demo as simple as possible.
// The method of determining cost was designed in order
// to exploit small and coplanar regions for
// effective polygon reduction.
// Is is possible to add some checks here to see if "folds"
// would be generated. i.e. normal of a remaining face gets
// flipped. I never seemed to run into this problem and
// therefore never added code to detect this case.
int i;
float edgelength = magnitude(v->position - u->position);
float curvature=0;
// find the "sides" triangles that are on the edge uv
List<Triangle *> sides;
for(i=0;i<u->face.num;i++) {
if(u->face[i]->HasVertex(v)){
sides.Add(u->face[i]);
}
}
// use the triangle facing most away from the sides
// to determine our curvature term
for(i=0;i<u->face.num;i++) {
float mincurv=1; // curve for face i and closer side to it
for(int j=0;j<sides.num;j++) {
// use dot product of face normals. '^' defined in vector
float dotprod = u->face[i]->normal ^ sides[j]->normal;
mincurv = min(mincurv,(1-dotprod)/2.0f);
}
curvature = max(curvature,mincurv);
}
float boundaryCost = u->position.fBoundaryCost + v->position.fBoundaryCost;
// the more coplanar the lower the curvature term
return edgelength * curvature + boundaryCost;
}
void ComputeEdgeCostAtVertex(Vertex *v) {
// compute the edge collapse cost for all edges that start
// from vertex v. Since we are only interested in reducing
// the object by selecting the min cost edge at each step, we
// only cache the cost of the least cost edge at this vertex
// (in member variable collapse) as well as the value of the
// cost (in member variable objdist).
if(v->neighbor.num==0) {
// v doesn't have neighbors so it costs nothing to collapse
v->collapse=NULL;
v->objdist=-0.01f;
return;
}
v->objdist = 1000000;
v->collapse=NULL;
// search all neighboring edges for "least cost" edge
for(int i=0;i<v->neighbor.num;i++) {
float dist;
dist = ComputeEdgeCollapseCost(v,v->neighbor[i]);
//std::cout << "Cost: " << dist << std::endl;
if(dist<v->objdist) {
v->collapse=v->neighbor[i]; // candidate for edge collapse
v->objdist=dist; // cost of the collapse
}
}
}
void ComputeAllEdgeCollapseCosts() {
// For all the edges, compute the difference it would make
// to the model if it was collapsed. The least of these
// per vertex is cached in each vertex object.
for(int i=0;i<vertices.num;i++) {
ComputeEdgeCostAtVertex(vertices[i]);
}
}
void Collapse(Vertex *u,Vertex *v){
// Collapse the edge uv by moving vertex u onto v
// Actually remove tris on uv, then update tris that
// have u to have v, and then remove u.
if(!v) {
// u is a vertex all by itself so just delete it
delete u;
return;
}
int i;
List<Vertex *>tmp;
// make tmp a list of all the neighbors of u
for(i=0;i<u->neighbor.num;i++) {
tmp.Add(u->neighbor[i]);
}
// delete triangles on edge uv:
for(i=u->face.num-1;i>=0;i--) {
if(u->face[i]->HasVertex(v)) {
delete(u->face[i]);
}
}
// update remaining triangles to have v instead of u
for(i=u->face.num-1;i>=0;i--) {
u->face[i]->ReplaceVertex(u,v);
}
delete u;
// recompute the edge collapse costs for neighboring vertices
for(i=0;i<tmp.num;i++) {
ComputeEdgeCostAtVertex(tmp[i]);
}
}
void AddVertex(List<VectorM> &vert){
for(int i=0;i<vert.num;i++) {
Vertex *v = new Vertex(vert[i],i);
}
}
void AddFaces(List<tridata> &tri){
for(int i=0;i<tri.num;i++) {
Triangle *t=new Triangle(
vertices[tri[i].v[0]],
vertices[tri[i].v[1]],
vertices[tri[i].v[2]] );
}
}
Vertex *MinimumCostEdge(){
// Find the edge that when collapsed will affect model the least.
// This funtion actually returns a Vertex, the second vertex
// of the edge (collapse candidate) is stored in the vertex data.
// Serious optimization opportunity here: this function currently
// does a sequential search through an unsorted list :-(
// Our algorithm could be O(n*lg(n)) instead of O(n*n)
Vertex *mn=vertices[0];
for(int i=0;i<vertices.num;i++) {
if(vertices[i]->objdist < mn->objdist) {
mn = vertices[i];
}
}
return mn;
}
void ProgressiveMesh(List<VectorM> &vert, List<tridata> &tri,
List<int> &map, List<int> &permutation)
{
AddVertex(vert); // put input data into our data structures
AddFaces(tri);
ComputeAllEdgeCollapseCosts(); // cache all edge collapse costs
permutation.SetSize(vertices.num); // allocate space
map.SetSize(vertices.num); // allocate space
// reduce the object down to nothing:
while(vertices.num > 0) {
// get the next vertex to collapse
Vertex *mn = MinimumCostEdge();
// keep track of this vertex, i.e. the collapse ordering
permutation[mn->id]=vertices.num-1;
// keep track of vertex to which we collapse to
map[vertices.num-1] = (mn->collapse)?mn->collapse->id:-1;
// Collapse this edge
Collapse(mn,mn->collapse);
}
// reorder the map list based on the collapse ordering
for(int i=0;i<map.num;i++) {
map[i] = (map[i]==-1)?0:permutation[map[i]];
}
// The caller of this function should reorder their vertices
// according to the returned "permutation".
}

View File

@ -0,0 +1,108 @@
#include <stdio.h>
#include <math.h>
#include <assert.h>
#include "vector_melax.h"
float sqr(float a) {return a*a;}
// vector (floating point) implementation
float magnitude(VectorM v) {
return (float)sqrt(sqr(v.x) + sqr( v.y)+ sqr(v.z));
}
VectorM normalize(VectorM v) {
float d=magnitude(v);
if (d==0) {
printf("Cant normalize ZERO vector\n");
assert(0);
d=0.1f;
}
v.x/=d;
v.y/=d;
v.z/=d;
return v;
}
VectorM operator+(VectorM v1,VectorM v2) {return VectorM(v1.x+v2.x,v1.y+v2.y,v1.z+v2.z);}
VectorM operator-(VectorM v1,VectorM v2) {return VectorM(v1.x-v2.x,v1.y-v2.y,v1.z-v2.z);}
VectorM operator-(VectorM v) {return VectorM(-v.x,-v.y,-v.z);}
VectorM operator*(VectorM v1,float s) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
VectorM operator*(float s, VectorM v1) {return VectorM(v1.x*s,v1.y*s,v1.z*s);}
VectorM operator/(VectorM v1,float s) {return v1*(1.0f/s);}
float operator^(VectorM v1,VectorM v2) {return v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;}
VectorM operator*(VectorM v1,VectorM v2) {
return VectorM(
v1.y * v2.z - v1.z*v2.y,
v1.z * v2.x - v1.x*v2.z,
v1.x * v2.y - v1.y*v2.x);
}
VectorM planelineintersection(VectorM n,float d,VectorM p1,VectorM p2){
// returns the point where the line p1-p2 intersects the plane n&d
VectorM dif = p2-p1;
float dn= n^dif;
float t = -(d+(n^p1) )/dn;
return p1 + (dif*t);
}
int concurrent(VectorM a,VectorM b) {
return(a.x==b.x && a.y==b.y && a.z==b.z);
}
// Matrix Implementation
matrix transpose(matrix m) {
return matrix( VectorM(m.x.x,m.y.x,m.z.x),
VectorM(m.x.y,m.y.y,m.z.y),
VectorM(m.x.z,m.y.z,m.z.z));
}
VectorM operator*(matrix m,VectorM v){
m=transpose(m); // since column ordered
return VectorM(m.x^v,m.y^v,m.z^v);
}
matrix operator*(matrix m1,matrix m2){
m1=transpose(m1);
return matrix(m1*m2.x,m1*m2.y,m1*m2.z);
}
//Quaternion Implementation
Quaternion operator*(Quaternion a,Quaternion b) {
Quaternion c;
c.r = a.r*b.r - a.x*b.x - a.y*b.y - a.z*b.z;
c.x = a.r*b.x + a.x*b.r + a.y*b.z - a.z*b.y;
c.y = a.r*b.y - a.x*b.z + a.y*b.r + a.z*b.x;
c.z = a.r*b.z + a.x*b.y - a.y*b.x + a.z*b.r;
return c;
}
Quaternion operator-(Quaternion q) {
return Quaternion(q.r*-1,q.x,q.y,q.z);
}
Quaternion operator*(Quaternion a,float b) {
return Quaternion(a.r*b, a.x*b, a.y*b, a.z*b);
}
VectorM operator*(Quaternion q,VectorM v) {
return q.getmatrix() * v;
}
VectorM operator*(VectorM v,Quaternion q){
assert(0); // must multiply with the quat on the left
return VectorM(0.0f,0.0f,0.0f);
}
Quaternion operator+(Quaternion a,Quaternion b) {
return Quaternion(a.r+b.r, a.x+b.x, a.y+b.y, a.z+b.z);
}
float operator^(Quaternion a,Quaternion b) {
return (a.r*b.r + a.x*b.x + a.y*b.y + a.z*b.z);
}
Quaternion slerp(Quaternion a,Quaternion b,float interp){
if((a^b) <0.0) {
a.r=-a.r;
a.x=-a.x;
a.y=-a.y;
a.z=-a.z;
}
float theta = (float)acos(a^b);
if(theta==0.0f) { return(a);}
return a*(float)(sin(theta-interp*theta)/sin(theta)) + b*(float)(sin(interp*theta)/sin(theta));
}

View File

@ -50,6 +50,11 @@ IF(WIN32)
#Install the util header files. #Install the util header files.
INSTALL(DIRECTORY include DESTINATION PolyVoxUtil COMPONENT development PATTERN "*.svn*" EXCLUDE) INSTALL(DIRECTORY include DESTINATION PolyVoxUtil COMPONENT development PATTERN "*.svn*" EXCLUDE)
#On windows, we also install the debug information. It's unfortunate that we have to hard-code
#the 'Debug' part of the path, but CMake doesn't seem to provide a way around this. The best I
#found was: http://www.cmake.org/pipermail/cmake/2007-October/016924.html (and it is a bit ugly).
INSTALL(FILES ${CMAKE_CURRENT_BINARY_DIR}/Debug/PolyVoxUtil_d.pdb DESTINATION PolyVoxUtil/lib CONFIGURATIONS Debug)
ELSE(WIN32) ELSE(WIN32)
INSTALL(TARGETS PolyVoxUtil INSTALL(TARGETS PolyVoxUtil
RUNTIME DESTINATION bin RUNTIME DESTINATION bin